A. Faltens
Lawrence Berkeley National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Faltens.
Physics of Plasmas | 2010
A. Friedman; J.J. Barnard; R.H. Cohen; D.P. Grote; Steven M. Lund; W.M. Sharp; A. Faltens; E. Henestroza; J.Y. Jung; J.W. Kwan; E.P. Lee; M. Leitner; B.G. Logan; J.-L. Vay; W.L. Waldron; Ronald C. Davidson; M. Dorf; E.P. Gilson; Igor D. Kaganovich
Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at ∼1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of ∼50–100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at the Lawrence Berkeley National Laboratory. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam’s longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutraliz...
Physics of fluids. B, Plasma physics | 1993
J.J. Barnard; F. Deadrick; A. Friedman; David P. Grote; L. V. Griffith; H. C. Kirbie; V. K. Neil; M. A. Newton; Arthur C. Paul; W.M. Sharp; H. D. Shay; Roger O. Bangerter; A. Faltens; C. G. Fong; David L. Judd; E.P. Lee; L. Reginato; S.S. Yu; T. F. Godlove
A two‐year study of recirculating induction heavy ion accelerators as low‐cost driver for inertial‐fusion energy applications was recently completed. The projected cost of a 4 MJ accelerator was estimated to be about
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1998
J.J. Barnard; Roger O. Bangerter; A. Faltens; T.J. Fessenden; A. Friedman; E.P. Lee; B.G. Logan; Steven M. Lund; Wayne R. Meier; W.M. Sharp; S.S. Yu
500 M (million) and the efficiency was estimated to be 35%. The principal technology issues include energy recovery of the ramped dipole magnets, which is achieved through use of ringing inductive/capacitive circuits, and high repetition rates of the induction cell pulsers, which is accomplished through arrays of field effect transistor (FET) switches. Principal physics issues identified include minimization of particle loss from interactions with the background gas, and more demanding emittance growth and centroid control requirements associated with the propagation of space‐charge‐dominated beams around bends and over large path lengths. In addition, instabilities such as the longitudinal resistive instability, beam‐breakup instability and betatron‐orbit instability were found to be controllable with careful design.
Physics of Plasmas | 1997
William M. Fawley; T. Garvey; S. Eylon; E. Henestroza; A. Faltens; T.J. Fessenden; K. Hahn; L. Smith; D.P. Grote
Abstract The approach to heavy-ion-driven inertial fusion studied most extensively in the US uses induction modulators and cores to accelerate and confine the beam longitudinally. The intrinsic peak-current capabilities of induction machines, together with their flexible pulse formats, provide a suitable match to the high peak-power requirement of a heavy-ion fusion target. However, as in the RF case, where combinations of linacs, synchrotrons, and storage rings offer a number of choices to be examined in designing an optimal system, the induction approach also allows a number of architectures, from which choices must be made. We review the main classes of architecture for induction drivers that have been studied to date. The main choice of accelerator structure is that between the linac and the recirculator, the latter being composed of several rings. Hybrid designs are also possible. Other design questions include which focusing system (electric quadrupole, magnetic quadrupole, or solenoid) to use, whether or not to merge beams, and what number of beams to use – all of which must be answered as a function of ion energy throughout the machine. Also, the optimal charge state and mass must be chosen. These different architectures and beam parameters lead to different emittances and imply different constraints on the final focus. The advantages and uncertainties of these various architectures will be discussed.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2001
J.W. Kwan; L. Ahle; D.N. Beck; F.M. Bieniosek; A. Faltens; D.P. Grote; E. Halaxa; E. Henestroza; W.B. Herrmannsfeldt; Victor P. Karpenko; Thomas C. Sangster
Current amplification of heavy-ion beams is an integral feature of the induction linac approach to heavy-ion fusion (HIF). In this paper we report on amplification experiments conducted on a single beam of the Multiple Beam Experiment (MBE-4), a heavy-ion (Cs+) induction linac. Earlier MBE-4 experiments [H. Meuth et al., Nucl. Instrum. Methods Phys. Res. A 278, 153 (1989)] had demonstrated up-to-9× current amplification but had been accompanied by an up-to-2× increase of normalized transverse emittance. Experiments to pinpoint the causes of this emittance growth indicated various factors were responsible, including focusing aberrations and mismatch difficulties between the injector diode and the accelerator transport lattice, a localized quadrupole misalignment problem, and the interaction of transversely large beams with the nonlinear elements of the focusing lattice. Following ameliorative measures, new current amplification experiments, both with and without acceleration, showed that current amplificat...
Physics of Plasmas | 2002
S. A. MacLaren; A. Faltens; P.A. Seidl; D. V. Rose
Ion source and injector development is one of the major parts of the HIF program in the USA. Our challenge is to design a cost effective driver-scale injector and to build a multiple beam module within the next couple of years. In this paper, several current-voltage scaling laws are summarized for guiding the injector design. Following the traditional way of building injectors for HIF induction linac, we have produced a preliminary design for a multiple beam driver-scale injector. We also developed an alternate option for a high current density injector that is much smaller in size. One of the changes following this new option is the possibility of using other kinds of ion sources than the surface ionization sources. So far, we are still looking for an ideal ion source candidate that can readily meet all the essential requirements.
Laser and Particle Beams | 2002
P.A. Seidl; D. Baca; F.M. Bieniosek; A. Faltens; Steven M. Lund; A.W. Molvik; L. Prost; W.L. Waldron
A one-tenth-scale version of a final focus subsystem for a heavy-ion-fusion driver has been built and used for experimental tests of concept. By properly scaling the parameters that relate ion energy and mass, current, emittance, and focusing fields, the transverse dynamics of a representative driver final focus have been replicated in a small laboratory beam. Whereas the driver beam parameters considered are 10 GeV Bi+ at 1.25 kA, the scaled experiment used a 95 μA beam of 160 keV Cs+ ions brought to a ballistic focus through a series of six quadrupole magnets. The measured focal spot size was consistent with calculations in the report of the design on which the experiment is based. In a second experimental program, a 400 μA beam was propagated through the focal system and partially neutralized after the last magnet using electrons released from a hot tungsten filament to test the predictions of the benefits of neutralization. The increase in beam current resulted in a corresponding increase in spot radi...
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2001
P.A. Seidl; F.M. Bieniosek; C.M. Celata; A. Faltens; J.W. Kwan; S.A. MacLaren; D.M. Ponce; D. Shuman; S.S. Yu; L. Ahle; Steven M. Lund; A.W. Molvik; Thomas C. Sangster
The High Current Experiment (HCX) is being assembled at Lawrence Berkeley National Laboratory as part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge dominated heavy-ion beams at high spacecharge intensity (line-charge density {approx} 0.2 {micro}C/m) over long pulse durations (>4 {micro}s). This machine will test transport issues at a driver-relevant scale resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, lost-particle induced electron effects, and longitudinal bunch control. We present the first experimental results carried out with the coasting K{sup +} ion beam transported through the first 10 electrostatic transport quadrupoles and associated diagnostics. Later phases of the experiment will include more electrostatic lattice periods to allow more sensitive tests of emittance growth, and also magnetic quadrupoles to explore similar issues in magnetic channels with a full driver scale beam.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2001
J.J. Barnard; L. Ahle; Roger O. Bangerter; F.M. Bieniosek; C.M. Celata; A. Faltens; A. Friedman; D.P. Grote; I. Haber; E. Henestroza; M.J.L. de Hoon; Victor P. Karpenko; R. A. Kishek; J.W. Kwan; E.P. Lee; B.G. Logan; Steven M. Lund; Wayne R. Meier; A.W. Molvik; Thomas C. Sangster; P.A. Seidl; W.M. Sharp
An overview of experiments is presented, in which the physical dimensions, emittance and perveance are scaled to explore driver-relevant beam dynamics. Among these are beam merging, focusing to a small spot, and bending and recirculating beams. The Virtual National Laboratory for Heavy Ion Fusion (VNL) is also developing two driver-scale beam experiments involving heavy-ion beams with I(sub beam) about 1 Ampere to provide guidance for the design of an Integrated Research Experiment (IRE) for driver system studies within the next 5 years. Multiple-beam sources and injectors are being designed and a one-beam module will be built and tested. Another experimental effort will be the transport of such a beam through about 100 magnetic quadrupoles. The experiment will determine transport limits at high aperture fill factors, beam halo formation, and the influence on beam properties of secondary electron Research into driver technology will be briefly presented, including the development of ferromagnetic core materials, induction core pulsers, multiple-beam quadrupole arrays and plasma channel formation experiments for pinched transport in reactor chambers.
Laser and Particle Beams | 2002
A. Faltens; A.F. Lietzke; GianLuca Sabbi; P.A. Seidl; Steven M. Lund; B. Manahan; N. Martovetsky; C.Y. Gung; J.V. Minervini; J.H. Schultz; L. Myatt; R. Meinke
We describe the goals and research program leading to the Heavy Ion Integrated Research Experiment (IRE). We review the basic constraints which lead to a design and give examples of parameters and capabilities of an IRE. We also show design tradeoffs generated by the systems code IBEAM.