Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Feller is active.

Publication


Featured researches published by A. Feller.


The Astrophysical Journal | 2010

SUNRISE: Instrument, Mission, Data, and First Results

S. K. Solanki; P. Barthol; S. Danilovic; A. Feller; A. Gandorfer; J. Hirzberger; T. L. Riethmüller; M. Schüssler; J. A. Bonet; V. Martínez Pillet; J. C. del Toro Iniesta; V. Domingo; J. Palacios; M. Knölker; N. Bello González; T. Berkefeld; M. Franz; W. Schmidt; Alan M. Title

The SUNRISE balloon-borne solar observatory consists of a 1 m aperture Gregory telescope, a UV filter imager, an imaging vector polarimeter, an image stabilization system, and further infrastructure. The first science flight of SUNRISE yielded high-quality data that revealed the structure, dynamics, and evolution of solar convection, oscillations, and magnetic fields at a resolution of around 100 km in the quiet Sun. After a brief description of instruments and data, the first qualitative results are presented. In contrast to earlier observations, we clearly see granulation at 214 nm. Images in Ca II H display narrow, short-lived dark intergranular lanes between the bright edges of granules. The very small-scale, mixed-polarity internetwork fields are found to be highly dynamic. A significant increase in detectable magnetic flux is found after phase-diversity-related reconstruction of polarization maps, indicating that the polarities are mixed right down to the spatial resolution limit and probably beyond.


Solar Physics | 2011

The Sunrise Mission

P. Barthol; A. Gandorfer; S. K. Solanki; M. Schüssler; B. Chares; W. Curdt; W. Deutsch; A. Feller; D. Germerott; B. Grauf; K. Heerlein; J. Hirzberger; M. Kolleck; R. Meller; R. Müller; T. L. Riethmüller; G. Tomasch; M. Knölker; Bruce W. Lites; G. Card; David F. Elmore; J. Fox; A. R. Lecinski; Peter G. Nelson; R. Summers; A. Watt; V. Martínez Pillet; J. A. Bonet; W. Schmidt; T. Berkefeld

The first science flight of the balloon-borne Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribution system ISLiD and correlating wavefront sensor CWS), the optomechanical support structure and the instrument mounting concept, the gondola structure and the power, pointing, and telemetry systems, and the general electronics architecture. We also explain the optimization of the structural and thermal design of the complete payload. The preparations for the science flight are described, including AIV and ground calibration of the instruments. The course of events during the science flight is outlined, up to the recovery activities. Finally, the in-flight performance of the instrumentation is discussed.


The Astrophysical Journal | 2010

FULLY RESOLVED QUIET-SUN MAGNETIC FLUX TUBE OBSERVED WITH THE SUNRISE/IMAX INSTRUMENT

A. Lagg; S. K. Solanki; T. L. Riethmüller; V. Martínez Pillet; M. Schüssler; J. Hirzberger; A. Feller; J. M. Borrero; W. Schmidt; J. C. del Toro Iniesta; J. A. Bonet; P. Barthol; T. Berkefeld; V. Domingo; A. Gandorfer; M. Knölker; Alan M. Title

Until today, the small size of magnetic elements in quiet-Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope SUNRISE with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical solution of the radiative transfer equation to retrieve the temperature stratification and the field strength in the magnetic patch. The observations can be well reproduced with a one-component, fully magnetized atmosphere with a field strength exceeding 1 kG and a significantly enhanced temperature in the mid to upper photosphere with respect to its surroundings, consistent with semi-empirical flux tube models for plage regions. We therefore conclude that, within the framework of a simple atmospheric model, the IMaX measurements resolve the observed quiet-Sun flux tube.


Solar Physics | 2011

The Filter Imager SuFI and the Image Stabilization and Light Distribution System ISLiD of the Sunrise Balloon-Borne Observatory: Instrument Description

A. Gandorfer; B. Grauf; P. Barthol; T. L. Riethmüller; S. K. Solanki; B. Chares; W. Deutsch; S. Ebert; A. Feller; D. Germerott; K. Heerlein; J. Heinrichs; D. Hirche; J. Hirzberger; M. Kolleck; R. Meller; R. Müller; R. Schäfer; G. Tomasch; M. Knölker; V. Martínez Pillet; J. A. Bonet; W. Schmidt; T. Berkefeld; B. Feger; Frank Heidecke; Dirk Soltau; A. Tischenberg; A. Fischer; Alan M. Title

We describe the design of the Sunrise Filter Imager (SuFI) and the Image Stabilization and Light Distribution (ISLiD) unit onboard the Sunrise balloon borne solar observatory. This contribution provides the necessary information which is relevant to understand the instruments’ working principles, the relevant technical data, and the necessary information about calibration issues directly related to the science data.


The Astrophysical Journal | 2010

BRIGHT POINTS IN THE QUIET SUN AS OBSERVED IN THE VISIBLE AND NEAR-UV BY THE BALLOON-BORNE OBSERVATORY Sunrise

T. L. Riethmüller; S. K. Solanki; V. Martínez Pillet; J. Hirzberger; A. Feller; J. A. Bonet; N. Bello González; M. Franz; M. Schüssler; P. Barthol; T. Berkefeld; J. C. del Toro Iniesta; V. Domingo; A. Gandorfer; M. Knölker; W. Schmidt

Bright points (BPs) are manifestations of small magnetic elements in the solar photosphere. Their brightness contrast not only gives insight into the thermal state of the photosphere (and chromosphere) in magnetic elements, but also plays an important role in modulating the solar total and spectral irradiance. Here, we report on simultaneous high-resolution imaging and spectropolarimetric observations of BPs using SUNRISE balloon-borne observatory data of the quiet Sun at the disk center. BP contrasts have been measured between 214 nm and 525 nm, including the first measurements at wavelengths below 388 nm. The histograms of the BP peak brightness show a clear trend toward broader contrast distributions and higher mean contrasts at shorter wavelengths. At 214 nm, we observe a peak brightness of up to five times the mean quiet-Sun value, the highest BP contrast so far observed. All BPs are associated with a magnetic signal, although in a number of cases it is surprisingly weak. Most of the BPs show only weak downflows, the mean value being 240 m s–1, but some display strong down- or upflows reaching a few km s–1.


Astronomy and Astrophysics | 2013

Structure and dynamics of isolated internetwork Ca II H bright points observed by SUNRISE

S. Jafarzadeh; S. K. Solanki; A. Feller; A. Lagg; A. Pietarila; S. Danilovic; T. L. Riethmüller; V. Martínez Pillet

Aims. We aim to improve our picture of the low chromosphere in the quiet-Sun internetwork by investigating the intensity, horizontal velocity, size and lifetime variations of small bright points (BPs; diameter smaller than 0.3 arcsec) observed in the Ca ii H 3968 A passband along with their magnetic field parameters, derived from photospheric magnetograms. Methods. Several high-quality time series of disc-centre, quiet-Sun observations from the Sunrise balloon-borne solar telescope, with spatial resolution of around 100 km on the solar surface, have been analysed to study the dynamics of BPs observed in the Ca ii H passband and their dependence on the photospheric vector magnetogram signal. Results. Parameters such as horizontal velocity, diameter, intensity and lifetime histograms of the isolated internetwork and magn


Astronomy and Astrophysics | 2014

Comparison of solar photospheric bright points between Sunrise observations and MHD simulations

T. L. Riethmüller; S. K. Solanki; S. V. Berdyugina; M. Schüssler; V. Mart ' inez Pillet; A. Feller; A. Gandorfer; J. Hirzberger

Bright points (BPs) in the solar photosphere are radiative signatures of magnetic elements described by slender flux tubes located in the darker intergranular lanes. They contribute to the ultraviolet (UV) flux variations over the solar cycle and hence may influence the Earths climate. Here we combine high-resolution UV and spectro-polarimetric observations of BPs by the SUNRISE observatory with 3D radiation MHD simulations. Full spectral line syntheses are performed with the MHD data and a careful degradation is applied to take into account all relevant instrumental effects of the observations. It is demonstrated that the MHD simulations reproduce the measured distributions of intensity at multiple wavelengths, line-of-sight velocity, spectral line width, and polarization degree rather well. Furthermore, the properties of observed BPs are compared with synthetic ones. These match also relatively well, except that the observations display a tail of large and strongly polarized BPs not found in the simulations. The higher spatial resolution of the simulations has a significant effect, leading to smaller and more numerous BPs. The observation that most BPs are weakly polarized is explained mainly by the spatial degradation, the stray light contamination, and the temperature sensitivity of the Fe I line at 5250.2 \AA{}. The Stokes


Astrophysical Journal Supplement Series | 2017

The second flight of the Sunrise Balloon-borne Solar Observatory: overview of instrument updates, the flight, the data, and first results

S. K. Solanki; T. L. Riethmüller; P. Barthol; S. Danilovic; W. Deutsch; Hans-Peter Doerr; A. Feller; A. Gandorfer; D. Germerott; Laurent Gizon; B. Grauf; K. Heerlein; J. Hirzberger; M. Kolleck; A. Lagg; R. Meller; G. Tomasch; M. van Noort; J. Blanco Rodríguez; J. L. Gasent Blesa; M. Balaguer Jiménez; J. C. del Toro Iniesta; A. C. Lopez Jimenez; D. Orozco Suárez; T. Berkefeld; C. Halbgewachs; W. Schmidt; Alberto Alvarez-Herrero; L. Sabau-Graziati; I. Pérez Grande

V


The Astrophysical Journal | 2010

QUIET-SUN INTENSITY CONTRASTS IN THE NEAR-ULTRAVIOLET AS MEASURED FROM Sunrise

J. Hirzberger; A. Feller; T. L. Riethmüller; M. Schüssler; Juan Manuel Borrero; N. Afram; Yvonne C. Unruh; S. V. Berdyugina; A. Gandorfer; S. K. Solanki; P. Barthol; J. A. Bonet; V. Martínez Pillet; T. Berkefeld; M. Knölker; W. Schmidt; Alan M. Title

asymmetries of the BPs increase with the distance to their center in both observations and simulations, consistent with the classical picture of a production of the asymmetry in the canopy. This is the first time that this has been found also in the internetwork. Almost vertical kilo-Gauss fields are found for 98 % of the synthetic BPs. At the continuum formation height, the simulated BPs are on average 190 K hotter than the mean quiet Sun, their mean BP field strength is 1750 G, supporting the flux-tube paradigm to describe BPs.


Astronomy and Astrophysics | 2014

Migration of Ca II H bright points in the internetwork

S. Jafarzadeh; R. H. Cameron; S. K. Solanki; A. Pietarila; A. Feller; A. Lagg; A. Gandorfer

The SUNRISE balloon-borne solar observatory, consisting of a 1~m aperture telescope that provided a stabilized image to a UV filter imager and an imaging vector polarimeter, carried out its second science flight in June 2013. It provided observations of parts of active regions at high spatial resolution, including the first high-resolution images in the Mg~{\sc ii}~k line. The obtained data are of very high quality, with the best UV images reaching the diffraction limit of the telescope at 3000~\AA\ after Multi-Frame Blind Deconvolution reconstruction accounting for phase-diversity information. Here a brief update is given of the instruments and the data reduction techniques, which includes an inversion of the polarimetric data. Mainly those aspects that evolved compared with the first flight are described. A tabular overview of the observations is given. In addition, an example time series of a part of the emerging active region NOAA AR~11768 observed relatively close to disk centre is described and discussed in some detail. The observations cover the pores in the trailing polarity of the active region, as well as the polarity inversion line where flux emergence was ongoing and a small flare-like brightening occurred in the course of the time series. The pores are found to contain magnetic field strengths ranging up to 2500~G and, while large pores are clearly darker and cooler than the quiet Sun in all layers of the photosphere, the temperature and brightness of small pores approach or even exceed those of the quiet Sun in the upper photosphere.

Collaboration


Dive into the A. Feller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Schmidt

Kiepenheuer Institut für Sonnenphysik

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Berkefeld

Kiepenheuer Institut für Sonnenphysik

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Collados

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

C. Denker

Leibniz Institute for Astrophysics Potsdam

View shared research outputs
Top Co-Authors

Avatar

Dirk Soltau

Kiepenheuer Institut für Sonnenphysik

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Hofmann

Leibniz Institute for Astrophysics Potsdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge