Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Francis Stewart is active.

Publication


Featured researches published by A. Francis Stewart.


Nature Biotechnology | 2003

High-throughput engineering of the mouse genome coupled withhigh-resolution expression analysis

David M. Valenzuela; Andrew J. Murphy; David Frendewey; Nicholas W. Gale; Aris N. Economides; Wojtek Auerbach; William Poueymirou; Niels C. Adams; Jose Rojas; Jason Yasenchak; Rostislav Chernomorsky; Marylene Boucher; Andrea L Elsasser; Lakeisha Esau; Jenny Zheng; Jennifer Griffiths; Xiaorong Wang; Hong Su; Yingzi Xue; Melissa G. Dominguez; Irene Noguera; Richard Torres; Lynn Macdonald; A. Francis Stewart; Thomas M. DeChiara; George D. Yancopoulos

One of the most effective approaches for determining gene function involves engineering mice with mutations or deletions in endogenous genes of interest. Historically, this approach has been limited by the difficulty and time required to generate such mice. We describe the development of a high-throughput and largely automated process, termed VelociGene, that uses targeting vectors based on bacterial artificial chromosomes (BACs). VelociGene permits genetic alteration with nucleotide precision, is not limited by the size of desired deletions, does not depend on isogenicity or on positive–negative selection, and can precisely replace the gene of interest with a reporter that allows for high-resolution localization of target-gene expression. We describe custom genetic alterations for hundreds of genes, corresponding to about 0.5–1.0% of the entire genome. We also provide dozens of informative expression patterns involving cells in the nervous system, immune system, vasculature, skeleton, fat and other tissues.*Note: In the author list of the AOP version of this article, the name of author Rostislav Chernomorsky was misspelled Rostislav Chernomorski. This has been corrected in the online and print versions of the article.


Cell | 2012

The Transcriptional and Epigenomic Foundations of Ground State Pluripotency

Hendrik Marks; Tuzer Kalkan; Roberta Menafra; Sergey Denissov; Kenneth D Jones; Helmut Hofemeister; Jennifer Nichols; Andrea Kranz; A. Francis Stewart; Austin Smith; Hendrik G. Stunnenberg

Summary Mouse embryonic stem (ES) cells grown in serum exhibit greater heterogeneity in morphology and expression of pluripotency factors than ES cells cultured in defined medium with inhibitors of two kinases (Mek and GSK3), a condition known as “2i” postulated to establish a naive ground state. We show that the transcriptome and epigenome profiles of serum- and 2i-grown ES cells are distinct. 2i-treated cells exhibit lower expression of lineage-affiliated genes, reduced prevalence at promoters of the repressive histone modification H3K27me3, and fewer bivalent domains, which are thought to mark genes poised for either up- or downregulation. Nonetheless, serum- and 2i-grown ES cells have similar differentiation potential. Precocious transcription of developmental genes in 2i is restrained by RNA polymerase II promoter-proximal pausing. These findings suggest that transcriptional potentiation and a permissive chromatin context characterize the ground state and that exit from it may not require a metastable intermediate or multilineage priming.


The EMBO Journal | 2001

The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4

Assen Roguev; Daniel Schaft; Anna Shevchenko; W.W.M. Pim Pijnappel; Matthias Wilm; Rein Aasland; A. Francis Stewart

The SET domain proteins, SUV39 and G9a have recently been shown to be histone methyltransferases specific for lysines 9 and 27 (G9a only) of histone 3 (H3). The SET domains of the Saccharomyces cerevisiae Set1 and Drosophila trithorax proteins are closely related to each other but distinct from SUV39 and G9a. We characterized the complex associated with Set1 and Set1C and found that it is comprised of eight members, one of which, Bre2, is homologous to the trithorax‐group (trxG) protein, Ash2. Set1C requires Set1 for complex integrity and mutation of Set1 and Set1C components shortens telomeres. One Set1C member, Swd2/Cpf10 is also present in cleavage polyadenylation factor (CPF). Set1C methylates lysine 4 of H3, thus adding a new specificity and a new subclass of SET domain proteins known to methyltransferases. Since methylation of H3 lysine 4 is widespread in eukaryotes, we screened the databases and found other Set1 homologues. We propose that eukaryotic Set1Cs are H3 lysine 4 methyltransferases and are related to trxG action through association with Ash2 homologues.


Nature Methods | 2008

BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals

Ina Poser; Mihail Sarov; James R. A. Hutchins; Jean-Karim Hériché; Yusuke Toyoda; Andrei Pozniakovsky; Anja Nitzsche; Björn Hegemann; Alexander W. Bird; Laurence Pelletier; Ralf Kittler; Sujun Hua; Ronald Naumann; Martina Augsburg; Martina M. Sykora; Helmut Hofemeister; Youming Zhang; Kim Nasmyth; Kevin P. White; Steffen Dietzel; Karl Mechtler; Richard Durbin; A. Francis Stewart; Jan-Michael Peters; Frank Buchholz; Anthony A. Hyman

The interpretation of genome sequences requires reliable and standardized methods to assess protein function at high throughput. Here we describe a fast and reliable pipeline to study protein function in mammalian cells based on protein tagging in bacterial artificial chromosomes (BACs). The large size of the BAC transgenes ensures the presence of most, if not all, regulatory elements and results in expression that closely matches that of the endogenous gene. We show that BAC transgenes can be rapidly and reliably generated using 96-well-format recombineering. After stable transfection of these transgenes into human tissue culture cells or mouse embryonic stem cells, the localization, protein-protein and/or protein-DNA interactions of the tagged protein are studied using generic, tag-based assays. The same high-throughput approach will be generally applicable to other model systems.NOTE: In the version of this article initially published online, the name of one individual was misspelled in the Acknowledgments. The second sentence of the Acknowledgments paragraph should read, “We thank I. Cheesman for helpful discussions.” The error has been corrected for all versions of the article.


Nature Biotechnology | 2000

DNA cloning by homologous recombination in Escherichia coli

Youming Zhang; Joep P. P. Muyrers; Giuseppe Testa; A. Francis Stewart

The cloning of foreign DNA in Escherichia coli episomes is a cornerstone of molecular biology. The pioneering work in the early 1970s, using DNA ligases to paste DNA into episomal vectors, is still the most widely used approach. Here we describe a different principle, using ET recombination, for directed cloning and subcloning, which offers a variety of advantages. Most prominently, a chosen DNA region can be cloned from a complex mixture without prior isolation. Hence cloning by ET recombination resembles PCR in that both involve the amplification of a DNA region between two chosen points. We apply the strategy to subclone chosen DNA regions from several target molecules resident in E. coli hosts, and to clone chosen DNA regions from genomic DNA preparations. Here we analyze basic aspects of the approach and present several examples that illustrate its simplicity, flexibility, and remarkable efficiency.


Cell Stem Cell | 2009

A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity.

Li Ding; Maciej Paszkowski-Rogacz; Anja Nitzsche; Mikolaj Slabicki; Anne Kristin Heninger; Ingrid de Vries; Ralf Kittler; Magno Junqueira; Andrej Shevchenko; Herbert Schulz; Norbert Hubner; Michael Xavier Doss; Agapios Sachinidis; Juergen Hescheler; Roberto Iacone; Konstantinos Anastassiadis; A. Francis Stewart; M. Teresa Pisabarro; Antonio Caldarelli; Ina Poser; Mirko Theis; Frank Buchholz

Pluripotent embryonic stem cells (ESCs) maintain self-renewal while ensuring a rapid response to differentiation cues. The identification of genes maintaining ESC identity is important to develop these cells for their potential therapeutic use. Here we report a genome-scale RNAi screen for a global survey of genes affecting ESC identity via alteration of Oct4 expression. Factors with the strongest effect on Oct4 expression included components of the Paf1 complex, a protein complex associated with RNA polymerase II. Using a combination of proteomics, expression profiling, and chromatin immunoprecipitation, we demonstrate that the Paf1C binds to promoters of key pluripotency genes, where it is required to maintain a transcriptionally active chromatin structure. The Paf1C is developmentally regulated and blocks ESC differentiation upon overexpression, and the knockdown in ESCs causes expression changes similar to Oct4 or Nanog depletions. We propose that the Paf1C plays an important role in maintaining ESC identity.


Development | 2006

Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development

Stefan Glaser; Julia Schaft; Sandra Lubitz; Kristina Vintersten; Frank van der Hoeven; Katharina R. Tufteland; Rein Aasland; Konstantinos Anastassiadis; Siew-Lan Ang; A. Francis Stewart

Epigenesis is the process whereby the daughters of a dividing cell retain a chromatin state determined before cell division. The best-studied cases involve the inheritance of heterochromatic chromosomal domains, and little is known about specific gene regulation by epigenetic mechanisms. Recent evidence shows that epigenesis pivots on methylation of nucleosomes at histone 3 lysines 4, 9 or 27. Bioinformatics indicates that mammals have several enzymes for each of these methylations, including at least six histone 3 lysine 4 methyltransferases. To look for evidence of gene-specific epigenetic regulation in mammalian development, we examined one of these six, Mll2, using a multipurpose allele in the mouse to ascertain the loss-of-function phenotype. Loss of Mll2 slowed growth, increased apoptosis and retarded development, leading to embryonic failure before E11.5. Using chimera experiments, we demonstrated that Mll2 is cell-autonomously required. Evidence for gene-specific regulation was also observed. Although Mox1 and Hoxb1 expression patterns were correctly established, they were not maintained in the absence of Mll2, whereas Wnt1 and Otx2 were. The Mll2 loss-of-function phenotype is different from that of its sister gene Mll, and they regulate different Hox complex genes during ES cell differentiation. Therefore, these two closely related epigenetic factors play different roles in development and maintain distinct gene expression patterns. This suggests that other epigenetic factors also regulate particular patterns and that development entails networks of epigenetic specificities.


Nature Genetics | 2004

The European dimension for the mouse genome mutagenesis program

Johan Auwerx; Phil Avner; Richard Baldock; Andrea Ballabio; Rudi Balling; Mariano Barbacid; Anton Berns; Allan Bradley; Steve D.M. Brown; Peter Carmeliet; Pierre Chambon; Roger D. Cox; Duncan Davidson; Kay E. Davies; Denis Duboule; Jiri Forejt; Francesca Granucci; Nicholas D. Hastie; Martin Hrabé de Angelis; Ian J. Jackson; Dimitris Kioussis; George Kollias; Mark Lathrop; Urban Lendahl; Marcos Malumbres; Harald von Melchner; Werner Müller; Juha Partanen; Paola Ricciardi-Castagnoli; Peter Rigby

The European Mouse Mutagenesis Consortium is the European initiative contributing to the international effort on functional annotation of the mouse genome. Its objectives are to establish and integrate mutagenesis platforms, gene expression resources, phenotyping units, storage and distribution centers and bioinformatics resources. The combined efforts will accelerate our understanding of gene function and of human health and disease.


Nature Biotechnology | 2012

Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting

Jun Fu; Xiaoying Bian; Shengbaio Hu; Hailong Wang; Fan Huang; Philipp Martin Seibert; Alberto Plaza; Liqiu Xia; Rolf Müller; A. Francis Stewart; Youming Zhang

Functional analysis of genome sequences requires methods for cloning DNA of interest. However, existing methods, such as library cloning and screening, are too demanding or inefficient for high-throughput application to the wealth of genomic data being delivered by massively parallel sequencing. Here we describe direct DNA cloning based on the discovery that the full-length Rac prophage protein RecE and its partner RecT mediate highly efficient linear-linear homologous recombination mechanistically distinct from conventional recombineering mediated by Redαβ from lambda phage or truncated versions of RecET. We directly cloned all ten megasynthetase gene clusters (each 10–52 kb in length) from Photorhabdus luminescens into expression vectors and expressed two of them in a heterologous host to identify the metabolites luminmycin A and luminmide A/B. We also directly cloned cDNAs and exactly defined segments from bacterial artificial chromosomes. Direct cloning with full-length RecE expands the DNA engineering toolbox and will facilitate bioprospecting for natural products.


Nature Genetics | 2005

Current issues in mouse genome engineering

Stefan Glaser; Konstantinos Anastassiadis; A. Francis Stewart

The mouse is the foremost vertebrate experimental model because its genome can be precisely and variously engineered. Now that the mouse genome has been sequenced and annotated, the task of mutating each gene is feasible, and an international cooperation is providing mutated embryonic stem cells and mice as readily available resources. Because these resources will change biomedical research, decisions about their nature will have far-reaching effects. It is therefore timely to consider topical issues for mouse genome engineering, such as the background genotype; homologous, site-specific and transpositional recombination; conditional mutagenesis; RNA-mediated interference; and functional genomics with embryonic stem cells.

Collaboration


Dive into the A. Francis Stewart's collaboration.

Top Co-Authors

Avatar

Jun Fu

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Konstantinos Anastassiadis

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Youming Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Andrea Kranz

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Assen Roguev

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Buchholz

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge