Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mihail Sarov is active.

Publication


Featured researches published by Mihail Sarov.


Nature Methods | 2008

BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals

Ina Poser; Mihail Sarov; James R. A. Hutchins; Jean-Karim Hériché; Yusuke Toyoda; Andrei Pozniakovsky; Anja Nitzsche; Björn Hegemann; Alexander W. Bird; Laurence Pelletier; Ralf Kittler; Sujun Hua; Ronald Naumann; Martina Augsburg; Martina M. Sykora; Helmut Hofemeister; Youming Zhang; Kim Nasmyth; Kevin P. White; Steffen Dietzel; Karl Mechtler; Richard Durbin; A. Francis Stewart; Jan-Michael Peters; Frank Buchholz; Anthony A. Hyman

The interpretation of genome sequences requires reliable and standardized methods to assess protein function at high throughput. Here we describe a fast and reliable pipeline to study protein function in mammalian cells based on protein tagging in bacterial artificial chromosomes (BACs). The large size of the BAC transgenes ensures the presence of most, if not all, regulatory elements and results in expression that closely matches that of the endogenous gene. We show that BAC transgenes can be rapidly and reliably generated using 96-well-format recombineering. After stable transfection of these transgenes into human tissue culture cells or mouse embryonic stem cells, the localization, protein-protein and/or protein-DNA interactions of the tagged protein are studied using generic, tag-based assays. The same high-throughput approach will be generally applicable to other model systems.NOTE: In the version of this article initially published online, the name of one individual was misspelled in the Acknowledgments. The second sentence of the Acknowledgments paragraph should read, “We thank I. Cheesman for helpful discussions.” The error has been corrected for all versions of the article.


Science | 2010

Systematic Analysis of Human Protein Complexes Identifies Chromosome Segregation Proteins

James R. A. Hutchins; Yusuke Toyoda; Björn Hegemann; Ina Poser; Jean-Karim Hériché; Martina M. Sykora; Martina Augsburg; Otto Hudecz; Bettina A. Buschhorn; Jutta Bulkescher; Christian Conrad; David Comartin; Alexander Schleiffer; Mihail Sarov; Andrei Pozniakovsky; Mikolaj Slabicki; Siegfried Schloissnig; Ines Steinmacher; Marit Leuschner; Andrea Ssykor; Steffen Lawo; Laurence Pelletier; Holger Stark; Kim Nasmyth; Jan Ellenberg; Richard Durbin; Frank Buchholz; Karl Mechtler; Anthony A. Hyman; Jan-Michael Peters

Division Machinery Tagged An international consortium of labs has been testing the feasibility of large-scale screening for insights into the function of mammalian proteins by expressing a tagged version of proteins from bacterial artificial chromosomes harbored in mammalian cells. Depending on the tag used, Hutchins et al. (p. 593, published online 1 April) were able to monitor localization of tagged proteins by microscopy or to isolate interacting proteins and subsequently identify the binding partners by mass spectrometry. Applying the technology to proteins implicated in control of cell division revealed about 100 protein machines required for mitosis. A strategy designed to decipher the function of proteins identified in RNA interference screens reveals new insights into mitosis. Chromosome segregation and cell division are essential, highly ordered processes that depend on numerous protein complexes. Results from recent RNA interference screens indicate that the identity and composition of these protein complexes is incompletely understood. Using gene tagging on bacterial artificial chromosomes, protein localization, and tandem-affinity purification–mass spectrometry, the MitoCheck consortium has analyzed about 100 human protein complexes, many of which had not or had only incompletely been characterized. This work has led to the discovery of previously unknown, evolutionarily conserved subunits of the anaphase-promoting complex and the γ-tubulin ring complex—large complexes that are essential for spindle assembly and chromosome segregation. The approaches we describe here are generally applicable to high-throughput follow-up analyses of phenotypic screens in mammalian cells.


Science | 2010

Systematic Localization and Purification of Human Protein Complexes Identifies Chromosome Segregation Proteins

James R. A. Hutchins; Yusuke Toyoda; Björn Hegemann; Ina Poser; Jean-Karim Hériché; Martina M. Sykora; Martina Augsburg; Otto Hudecz; Bettina A. Buschhorn; Jutta Bulkescher; Christian Conrad; David Comartin; Alexander Schleiffer; Mihail Sarov; Andrei Pozniakovsky; Mikolaj Slabicki; Siegfried Schloissnig; Ines Steinmacher; Marit Leuschner; Andrea Ssykor; Steffen Lawo; Laurence Pelletier; Holger Stark; Kim Nasmyth; Jan Ellenberg; Richard Durbin; Frank Buchholz; Karl Mechtler; Anthony A. Hyman; Jan-Michael Peters

Division Machinery Tagged An international consortium of labs has been testing the feasibility of large-scale screening for insights into the function of mammalian proteins by expressing a tagged version of proteins from bacterial artificial chromosomes harbored in mammalian cells. Depending on the tag used, Hutchins et al. (p. 593, published online 1 April) were able to monitor localization of tagged proteins by microscopy or to isolate interacting proteins and subsequently identify the binding partners by mass spectrometry. Applying the technology to proteins implicated in control of cell division revealed about 100 protein machines required for mitosis. A strategy designed to decipher the function of proteins identified in RNA interference screens reveals new insights into mitosis. Chromosome segregation and cell division are essential, highly ordered processes that depend on numerous protein complexes. Results from recent RNA interference screens indicate that the identity and composition of these protein complexes is incompletely understood. Using gene tagging on bacterial artificial chromosomes, protein localization, and tandem-affinity purification–mass spectrometry, the MitoCheck consortium has analyzed about 100 human protein complexes, many of which had not or had only incompletely been characterized. This work has led to the discovery of previously unknown, evolutionarily conserved subunits of the anaphase-promoting complex and the γ-tubulin ring complex—large complexes that are essential for spindle assembly and chromosome segregation. The approaches we describe here are generally applicable to high-throughput follow-up analyses of phenotypic screens in mammalian cells.


Genome Research | 2011

Diverse transcription factor binding features revealed by genome-wide ChIP-seq in C. elegans

Wei Niu; Zhi John Lu; Mei Zhong; Mihail Sarov; John I. Murray; Cathleen M. Brdlik; J. Janette; Chao Chen; Pedro Alves; E. Preston; Cindie Slightham; Lixia Jiang; Anthony A. Hyman; Stuart K. Kim; Robert H. Waterston; Mark Gerstein; Michael Snyder; Valerie Reinke

Regulation of gene expression by sequence-specific transcription factors is central to developmental programs and depends on the binding of transcription factors with target sites in the genome. To date, most such analyses in Caenorhabditis elegans have focused on the interactions between a single transcription factor with one or a few select target genes. As part of the modENCODE Consortium, we have used chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq) to determine the genome-wide binding sites of 22 transcription factors (ALR-1, BLMP-1, CEH-14, CEH-30, EGL-27, EGL-5, ELT-3, EOR-1, GEI-11, HLH-1, LIN-11, LIN-13, LIN-15B, LIN-39, MAB-5, MDL-1, MEP-1, PES-1, PHA-4, PQM-1, SKN-1, and UNC-130) at diverse developmental stages. For each factor we determined candidate gene targets, both coding and non-coding. The typical binding sites of almost all factors are within a few hundred nucleotides of the transcript start site. Most factors target a mixture of coding and non-coding target genes, although one factor preferentially binds to non-coding RNA genes. We built a regulatory network among the 22 factors to determine their functional relationships to each other and found that some factors appear to act preferentially as regulators and others as target genes. Examination of the binding targets of three related HOX factors--LIN-39, MAB-5, and EGL-5--indicates that these factors regulate genes involved in cellular migration, neuronal function, and vulval differentiation, consistent with their known roles in these developmental processes. Ultimately, the comprehensive mapping of transcription factor binding sites will identify features of transcriptional networks that regulate C. elegans developmental processes.


Nature Methods | 2006

A recombineering pipeline for functional genomics applied to Caenorhabditis elegans

Mihail Sarov; Susan Schneider; Andrei Pozniakovski; Assen Roguev; Susanne Ernst; Youming Zhang; Anthony A. Hyman; A. Francis Stewart

We present a new concept in DNA engineering based on a pipeline of serial recombineering steps in liquid culture. This approach is fast, straightforward and facilitates simultaneous processing of multiple samples in parallel. We validated the approach by generating green fluorescent protein (GFP)-tagged transgenes from Caenorhabditis briggsae genomic clones in a multistep pipeline that takes only 4 d. The transgenes were engineered with minimal disturbance to the natural genomic context so that the correct level and pattern of expression will be secured after transgenesis. An example transgene for the C. briggsae ortholog of lin-59 was used for ballistic transformation in Caenorhabditis elegans. We show that the cross-species transgene is correctly expressed and rescues RNA interference (RNAi)-mediated knockdown of the endogenous C. elegans gene. The strategy that we describe adapts the power of recombineering in Escherichia coli for fluent DNA engineering to a format that can be directly scaled up for genomic projects.


Nature | 2015

Panorama of ancient metazoan macromolecular complexes.

Cuihong Wan; Blake Borgeson; Sadhna Phanse; Fan Tu; Kevin Drew; Greg W. Clark; Xuejian Xiong; Olga Kagan; Julian Kwan; Alexandr Bezginov; Kyle Chessman; Swati Pal; Graham L. Cromar; Ophelia Papoulas; Zuyao Ni; Daniel R. Boutz; Snejana Stoilova; Pierre C. Havugimana; Xinghua Guo; Ramy H. Malty; Mihail Sarov; Jack Greenblatt; Mohan Babu; W. Brent Derry; Elisabeth R. M. Tillier; John B. Wallingford; John Parkinson; Edward M. Marcotte; Andrew Emili

Macromolecular complexes are essential to conserved biological processes, but their prevalence across animals is unclear. By combining extensive biochemical fractionation with quantitative mass spectrometry, here we directly examined the composition of soluble multiprotein complexes among diverse metazoan models. Using an integrative approach, we generated a draft conservation map consisting of more than one million putative high-confidence co-complex interactions for species with fully sequenced genomes that encompasses functional modules present broadly across all extant animals. Clustering reveals a spectrum of conservation, ranging from ancient eukaryotic assemblies that have probably served cellular housekeeping roles for at least one billion years, ancestral complexes that have accrued contemporary components, and rarer metazoan innovations linked to multicellularity. We validated these projections by independent co-fractionation experiments in evolutionarily distant species, affinity purification and functional analyses. The comprehensiveness, centrality and modularity of these reconstructed interactomes reflect their fundamental mechanistic importance and adaptive value to animal cell systems.


Cell | 2012

A Genome-Scale Resource for In Vivo Tag-Based Protein Function Exploration in C. elegans

Mihail Sarov; John I. Murray; Kristin Schanze; Andrei Pozniakovski; Wei Niu; Karolin Angermann; Susanne Hasse; Michaela Rupprecht; Elisabeth Vinis; Matthew Tinney; E. Preston; Andrea Zinke; Susanne Enst; Tina Teichgraber; J. Janette; Kadri Reis; Stephan Janosch; Siegfried Schloissnig; Radoslaw Kamil Ejsmont; C. Slightam; Xiao Xu; Stuart K. Kim; Valerie Reinke; A. Francis Stewart; Michael Snyder; Robert H. Waterston; Anthony A. Hyman

Understanding the in vivo dynamics of protein localization and their physical interactions is important for many problems in biology. To enable systematic protein function interrogation in a multicellular context, we built a genome-scale transgenic platform for in vivo expression of fluorescent- and affinity-tagged proteins in Caenorhabditis elegans under endogenous cis regulatory control. The platform combines computer-assisted transgene design, massively parallel DNA engineering, and next-generation sequencing to generate a resource of 14,637 genomic DNA transgenes, which covers 73% of the proteome. The multipurpose tag used allows any protein of interest to be localized in vivo or affinity purified using standard tag-based assays. We illustrate the utility of the resource by systematic chromatin immunopurification and automated 4D imaging, which produced detailed DNA binding and cell/tissue distribution maps for key transcription factor proteins.


PLOS Genetics | 2010

Genome-Wide Identification of Binding Sites Defines Distinct Functions for Caenorhabditis elegans PHA-4/FOXA in Development and Environmental Response

Mei-fang Zhong; Wei Niu; Zhi John Lu; Mihail Sarov; John I. Murray; J. Janette; Debasish Raha; Karyn L. Sheaffer; Hugo Y. K. Lam; E. Preston; Cindie Slightham; LaDeana W. Hillier; Trisha J. Brock; Ashish Agarwal; Raymond K. Auerbach; Anthony A. Hyman; Mark Gerstein; Susan E. Mango; Stuart K. Kim; Robert H. Waterston; Valerie Reinke; Michael Snyder

Transcription factors are key components of regulatory networks that control development, as well as the response to environmental stimuli. We have established an experimental pipeline in Caenorhabditis elegans that permits global identification of the binding sites for transcription factors using chromatin immunoprecipitation and deep sequencing. We describe and validate this strategy, and apply it to the transcription factor PHA-4, which plays critical roles in organ development and other cellular processes. We identified thousands of binding sites for PHA-4 during formation of the embryonic pharynx, and also found a role for this factor during the starvation response. Many binding sites were found to shift dramatically between embryos and starved larvae, from developmentally regulated genes to genes involved in metabolism. These results indicate distinct roles for this regulator in two different biological processes and demonstrate the versatility of transcription factors in mediating diverse biological roles.


Nature Methods | 2014

Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon

Christian Frøkjær-Jensen; M. Wayne Davis; Mihail Sarov; Jon Taylor; Stephane Flibotte; Matthew LaBella; Andrei Pozniakovsky; Donald G. Moerman; Erik M. Jorgensen

We have generated a recombinant Mos1 transposon that can insert up to 45-kb transgenes into the Caenorhabditis elegans genome. The minimal Mos1 transposon (miniMos) is 550 bp long and inserts DNA into the genome at high frequency (∼60% of injected animals). Genetic and antibiotic markers can be used for selection, and the transposon is active in C. elegans isolates and Caenorhabditis briggsae. We used the miniMos transposon to generate six universal Mos1-mediated single-copy insertion (mosSCI) landing sites that allow targeted transgene insertion with a single targeting vector into permissive expression sites on all autosomes. We also generated two collections of strains: a set of bright fluorescent insertions that are useful as dominant, genetic balancers and a set of lacO insertions to track genome position.


Nature Methods | 2009

A toolkit for high-throughput, cross-species gene engineering in Drosophila

Radoslaw Kamil Ejsmont; Mihail Sarov; Sylke Winkler; Kamil Andrzej Lipinski; Pavel Tomancak

We generated two complementary genomic fosmid libraries for Drosophila melanogaster and Drosophila pseudoobscura that permit seamless modification of large genomic clones by high-throughput recombineering and direct transgenesis. The fosmid transgenes recapitulated endogenous gene expression patterns. These libraries, in combination with recombineering technology, will be useful to rescue mutant phenotypes, allow imaging of gene products in living flies and enable systematic analysis and manipulation of gene activity across species.

Collaboration


Dive into the Mihail Sarov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Francis Stewart

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Buchholz

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helmut Hofemeister

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge