Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. G. Lyne is active.

Publication


Featured researches published by A. G. Lyne.


Monthly Notices of the Royal Astronomical Society | 2005

A statistical study of 233 pulsar proper motions

G. Hobbs; D. R. Lorimer; A. G. Lyne; M. Kramer

We present and analyse a catalogue of 233 pulsars with proper motion measurements. The sample contains a wide variety of pulsars including recycled objects and those associated with globular clusters or supernova remnants. After taking the most precise proper motions for those pulsars for which multiple measurements are available, the majority of the proper motions (58 per cent) are derived from pulsar timing methods, 41 per cent using interferometers and the remaining 1 per cent using optical telescopes. Many of the one-dimensional (1D) and two-dimensional (2D) speeds (referring to speeds measured in one coordinate only and the magnitudes of the transverse velocities, respectively) derived from these measurements are somewhat lower than earlier estimates because of the use of the most recent electron density model in determining pulsar distances. The mean 1D speeds for the normal and recycled pulsars are 152(10) and 54(6) km s −1 , respectively. The corresponding mean 2D speeds are 246(22) and 87(13) km s −1 . PSRs B2011+38 and B2224+64 have the highest inferred 2D speeds of ∼1600 km s −1 .W estudy the mean speeds for different subsamples and find that, in general, they agree with previous results. Applying a novel deconvolution technique to the sample of 73 pulsars with characteristic ages less than 3 Myr, we find the mean threedimensional (3D) pulsar birth velocity to be 400(40) km s −1 . The distribution of velocities is well described by a Maxwellian distribution with 1D rms σ = 265 km s −1 . There is no evidence for a bimodal velocity distribution. The proper motions for PSRs B1830−08 and B2334+61 are consistent with their proposed associations with the supernova remnants W41 and G114.3+0.3, respectively. Ke yw ords: stars: kinematics ‐ pulsars: general.


Astrophysical Journal Supplement Series | 1993

Catalog of 558 pulsars

J. H. Taylor; R. N. Manchester; A. G. Lyne

We present an up-to-date compilation of the principal observed parameters of 558 pulsars, including positions, timing parameters, pulse widths, flux densities, proper motions, distances, and dispersion, rotation, and scattering measures. We also list the orbital elements of binary pulsars and some commonly used parameters derived from the basic measurements. Uncertainties are quoted for most quantities, and references to the original literature are given. Figures are used to illustrate the sample distributions of some of the more important parameters. Machine-readable versions of the tabulated information are available, together with software designed to make the data base useful to others working in the field


Science | 2004

A double-pulsar system: A rare laboratory for relativistic gravity and plasma physics

A. G. Lyne; M. Burgay; M. Kramer; Andrea Possenti; R. N. Manchester; F. Camilo; M. A. McLaughlin; D. R. Lorimer; N. D'Amico; B. C. Joshi; John H. Reynolds; P. C. C. Freire

The clocklike properties of pulsars moving in the gravitational fields of their unseen neutron-star companions have allowed unique tests of general relativity and provided evidence for gravitational radiation. We report here the detection of the 2.8-second pulsar J0737–3039B as the companion to the 23-millisecond pulsar J0737–3039A in a highly relativistic double neutron star system, allowing unprecedented tests of fundamental gravitational physics. We observed a short eclipse of J0737–3039A by J0737–3039B and orbital modulation of the flux density and the pulse shape of J0737–3039B, probably because of the influence of J0737–3039As energy flux on its magnetosphere. These effects will allow us to probe magneto-ionic properties of a pulsar magnetosphere.


Nature | 2003

An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system.

M. Burgay; N. D'Amico; A. Possenti; R. N. Manchester; A. G. Lyne; B. C. Joshi; M. A. McLaughlin; M. Kramer; J. Sarkissian; F. Camilo; V. Kalogera; C. Kim; D. R. Lorimer

The merger of close binary systems containing two neutron stars should produce a burst of gravitational waves, as predicted by the theory of general relativity. A reliable estimate of the double-neutron-star merger rate in the Galaxy is crucial in order to predict whether current gravity wave detectors will be successful in detecting such bursts. Present estimates of this rate are rather low, because we know of only a few double-neutron-star binaries with merger times less than the age of the Universe. Here we report the discovery of a 22-ms pulsar, PSR J0737–3039, which is a member of a highly relativistic double-neutron-star binary with an orbital period of 2.4 hours. This system will merge in about 85 Myr, a time much shorter than for any other known neutron-star binary. Together with the relatively low radio luminosity of PSR J0737–3039, this timescale implies an order-of-magnitude increase in the predicted merger rate for double-neutron-star systems in our Galaxy (and in the rest of the Universe).


Science | 2006

Tests of general relativity from timing the double pulsar

M. Kramer; I. H. Stairs; R. N. Manchester; M. A. McLaughlin; A. G. Lyne; R. D. Ferdman; M. Burgay; D. R. Lorimer; Andrea Possenti; N. D'Amico; J. Sarkissian; G. Hobbs; J. E. Reynolds; P. C. C. Freire; F. Camilo

The double pulsar system PSR J0737-3039A/B is unique in that both neutron stars are detectable as radio pulsars. They are also known to have much higher mean orbital velocities and accelerations than those of other binary pulsars. The system is therefore a good candidate for testing Einsteins theory of general relativity and alternative theories of gravity in the strong-field regime. We report on precision timing observations taken over the 2.5 years since its discovery and present four independent strong-field tests of general relativity. These tests use the theory-independent mass ratio of the two stars. By measuring relativistic corrections to the Keplerian description of the orbital motion, we find that the “post-Keplerian” parameter s agrees with the value predicted by general relativity within an uncertainty of 0.05%, the most precise test yet obtained. We also show that the transverse velocity of the systems center of mass is extremely small. Combined with the systems location near the Sun, this result suggests that future tests of gravitational theories with the double pulsar will supersede the best current solar system tests. It also implies that the second-born pulsar may not have formed through the core collapse of a helium star, as is usually assumed.


Monthly Notices of the Royal Astronomical Society | 2001

The Parkes multi-beam pulsar survey - I. Observing and data analysis systems, discovery and timing of 100 pulsars

R. N. Manchester; A. G. Lyne; F. Camilo; J. F. Bell; Victoria M. Kaspi; N. D'Amico; N. P. F. McKay; F. Crawford; I. H. Stairs; A. Possenti; M. Kramer; D.C. Sheppard

limiting flux density of the survey is about 0.2 mJy. At shorter or longer periods or higher dispersions, the sensitivity is reduced. Timing observations are carried out for pulsars discovered in the survey for 12‐18 months after confirmation to obtain accurate positions, spin parameters, dispersion measures, pulse shapes and mean flux densities. The survey is proving to be extremely successful, with more than 600 pulsars discovered so far. We expect that, when complete, this one survey will come close to finding as many pulsars as all previous pulsar surveys put together. The newly discovered pulsars tend to be young, distant and of high radio luminosity. They will form a valuable sample for studies of pulsar emission properties, the Galactic distribution and evolution of pulsars, and as probes of interstellar medium properties. This paper reports the timing and pulse shape parameters for the first 100 pulsars timed at Parkes, including three pulsars with periods of less than 100 ms which are members of binary systems. These results are briefly compared with the parameters of the previously known population.


Nature | 2006

Transient radio bursts from rotating neutron stars

M. A. McLaughlin; A. G. Lyne; D. R. Lorimer; M. Kramer; A. J. Faulkner; R. N. Manchester; J. M. Cordes; F. Camilo; A. Possenti; I. H. Stairs; G. Hobbs; Nichi DAmico; M. Burgay; John T. O'Brien

The radio sky is relatively unexplored for transient signals, although the potential of radio-transient searches is high. This was demonstrated recently by the discovery of a previously unknown type of source, varying on timescales of minutes to hours. Here we report a search for radio sources that vary on much shorter timescales. We found eleven objects characterized by single, dispersed bursts having durations between 2 and 30 ms. The average time intervals between bursts range from 4 min to 3 h with radio emission typically detectable for <1 s per day. From an analysis of the burst arrival times, we have identified periodicities in the range 0.4–7 s for ten of the eleven sources, suggesting origins in rotating neutron stars. Despite the small number of sources detected at present, their ephemeral nature implies a total Galactic population significantly exceeding that of the regularly pulsing radio pulsars. Five of the ten sources have periods >4 s, and the rate of change of the pulse period has been measured for three of them; for one source, we have inferred a high magnetic field strength of 5 × 1013 G. This suggests that the new population is related to other classes of isolated neutron stars observed at X-ray and γ-ray wavelengths.


Monthly Notices of the Royal Astronomical Society | 2006

The Parkes Multibeam Pulsar Survey - VI. Discovery and timing of 142 pulsars and a Galactic population analysis

D. R. Lorimer; A. J. Faulkner; A. G. Lyne; R. N. Manchester; M. Kramer; M. A. McLaughlin; G. Hobbs; Andrea Possenti; I. H. Stairs; F. Camilo; M. Burgay; N. D'Amico; A. Corongiu; F. Crawford

We present the discovery and follow-up observations of 142 pulsars found in the Parkes 20-cm multibeam pulsar survey of the Galactic plane. These new discoveries bring the total number of pulsars found by the survey to 742. In addition to tabulating spin and astrometric parameters, along with pulse width and flux density information, we present orbital characteristics for 13 binary pulsars which form part of the new sample. Combining these results from another recent Parkes multibeam survey at high Galactic latitudes, we have a sample of 1008 normal pulsars which we use to carry out a determination of their Galactic distribution and birth rate. We infer a total Galactic population of 30 000 ± 1100 potentially detectable pulsars (i.e. those beaming towards us) having 1.4-GHz luminosities above 0.1 mJy kpc 2 . Adopting the Tauris & Manchester beaming model, this translates to a total of 155 000 ± 6000 active radio pulsars in the Galaxy above this luminosity limit. Using a pulsar current analysis, we derive the birth rate of this population to be 1.4 ± 0.2 pulsars per century. An important conclusion from our work is that the inferred radial density function of pulsars depends strongly on the assumed distribution of free electrons in the Galaxy. As a result, any analyses using the most recent electron model of Cordes & Lazio predict a dearth of pulsars in the inner Galaxy. We show that this model can also bias the inferred pulsar scaleheight with respect to the Galactic plane. Combining our results with other Parkes multibeam surveys we find that the population is best described by an exponential distribution with a scaleheight of 330 pc. Surveys underway at Parkes and Arecibo are expected to improve the knowledge of the radial distribution outside the solar circle, and to discover several hundred new pulsars in the inner Galaxy.


The Astrophysical Journal | 2006

Pulsar Rotation Measures and the Large-Scale Structure of the Galactic Magnetic Field

Jinlin Lin Han; R. N. Manchester; A. G. Lyne; Guo Jun Qiao; W. van Straten

The large-scale magnetic field of our Galaxy can be probed in three dimensions using Faraday rotation of pulsar signals.Wereportonthedeterminationof223rotationmeasuresfrompolarizationobservationsofrelativelydistant southern pulsars made using the Parkes radio telescope. Combined with previously published observations, these data give clear evidence for large-scale counterclockwise fields (viewed from the north Galactic pole) in the spiral arms interior to the Sun and weaker evidence for a counterclockwise field in the Perseus arm. However, in interarm regions, including the solar neighborhood, we present evidence that suggests that large-scale fields are clockwise. Weproposethatthelarge-scaleGalacticmagneticfieldhasabisymmetricstructurewithreversalsontheboundaries of the spiral arms. Streaming motions associated with spiral density waves can directly generate such a structure from an initial, inwardly directed radial field. Large-scale fields increase toward the Galactic center, with a mean value of about 2 � G in the solar neighborhood and 4 � G at a galactocentric radius of 3 kpc. Subject headingg galaxies: magnetic fields — Galaxy: structure — ISM: magnetic fields — pulsars: general Online material: color figures


Science | 2006

A periodically active pulsar giving insight into magnetospheric physics

M. Kramer; A. G. Lyne; Jennifer Therese O'Brien; C. A. Jordan; D. R. Lorimer

PSR B1931+24 (J1933+2421) behaves as an ordinary isolated radio pulsar during active phases that are 5 to 10 days long. However, when the radio emission ceases, it switches off in less than 10 seconds and remains undetectable for the next 25 to 35 days, then switches on again. This pattern repeats quasi-periodically. The origin of this behavior is unclear. Even more remarkably, the pulsar rotation slows down 50% faster when it is on than when it is off. This indicates a massive increase in magnetospheric currents when the pulsar switches on, proving that pulsar wind plays a substantial role in pulsar spin-down. This allows us, for the first time, to estimate the magnetospheric currents in a pulsar magnetosphere during the occurrence of radio emission.

Collaboration


Dive into the A. G. Lyne's collaboration.

Top Co-Authors

Avatar

R. N. Manchester

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. W. Stappers

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

M. A. McLaughlin

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar

I. H. Stairs

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

D. R. Lorimer

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Burgay

University of Bologna

View shared research outputs
Top Co-Authors

Avatar

N. D'Amico

University of Cagliari

View shared research outputs
Researchain Logo
Decentralizing Knowledge