Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Goldman is active.

Publication


Featured researches published by A. Goldman.


Journal of Quantitative Spectroscopy & Radiative Transfer | 1998

THE HITRAN MOLECULAR SPECTROSCOPIC DATABASE AND HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 EDITION

Laurence S. Rothman; C. P. Rinsland; A. Goldman; S. T. Massie; David P. Edwards; J.-M. Flaud; A. Perrin; C. Camy-Peyret; V. Dana; J.-Y. Mandin; John W. Schroeder; A. Mccann; Robert R. Gamache; R. B. Wattson; K. Yoshino; Kelly Chance; Kenneth W. Jucks; Lynn Brown; Vassilii Nemtchinov; P. Varanasi

Since its first publication in 1973, the HITRAN molecular spectroscopic database has been recognized as the international standard for providing the necessary fundamental spectroscopic parameters for diverse atmospheric and laboratory transmission and radiance calculations. There have been periodic editions of HITRAN over the past decades as the database has been expanded and improved with respect to the molecular species and spectral range covered, the number of parameters included, and the accuracy of this information. The 1996 edition not only includes the customary line-by-line transition parameters familiar to HITRAN users, but also cross-section data, aerosol indices of refraction, software to filter and manipulate the data, and documentation. This paper describes the data and features that have been added or replaced since the previous edition of HITRAN. We also cite instances of critical data that are forthcoming.


Journal of Quantitative Spectroscopy & Radiative Transfer | 1992

The hitran molecular database : editions of 1991 and 1992

Laurence S. Rothman; Robert R. Gamache; R. H. Tipping; C. P. Rinsland; M. A. H. Smith; D. Chris Benner; V. Malathy Devi; J.-M. Flaud; C. Camy-Peyret; A. Perrin; A. Goldman; S. T. Massie; Linda R. Brown; Robert A. Toth

Abstract We describe in this paper the modifications, improvements, and enhancements to the HITRAN molecular absorption database that have occurred in the two editions of 1991 and 1992. The current database includes line parameters for 31 species and their isotopomers that are significant for terrestrial atmospheric studies. This line-by-line portion of HITRAN presently contains about 709,000 transitions between 0 and 23,000 cm-1 and contains three molecules not present in earlier versions: COF2, SF6, and H2S. The HITRAN compilation has substantially more information on chlorofluorocarbons and other molecular species that exhibit dense spectra which are not amenable to line-by-line representation. The user access of the database has been advanced, and new media forms are now available for use on personal computers.


Applied Optics | 1981

AFGL atmospheric absorption line parameters compilation - 1982 edition

Laurence S. Rothman; Robert R. Gamache; A. Barbe; A. Goldman; James R. Gillis; Linda R. Brown; Robert A. Toth; J.-M. Flaud; C. Camy-Peyret

The latest edition of the AFGL atmospheric absorption line parameters compilation for the seven most active infrared terrestrial absorbers is described. Major modifications to the atlas for this edition include updating of water-vapor parameters from 0 to 4300 cm(-1), improvements to line positions for carbon dioxide, substantial modifications to the ozone bands in the middle to far infrared, and improvements to the 7- and 2.3-microm bands of methane. The atlas now contains approximately 181,000 rotation and vibration-rotation transitions between 0 and 17,900 cm(-1). The sources of the absorption parameters are summarized.


Journal of Quantitative Spectroscopy & Radiative Transfer | 1999

The 1997 spectroscopic GEISA databank

Nicole Jacquinet-Husson; Eric Arié; J. Ballard; A. Barbe; Gordon L. Bjoraker; B. Bonnet; Linda R. Brown; C. Camy-Peyret; J.P. Champion; A. Chédin; Alexei A. Chursin; Cathy Clerbaux; Geoffrey Duxbury; J.-M. Flaud; N. Fourrié; André Fayt; G. Graner; Robert R. Gamache; A. Goldman; Vl. Golovko; Guy Guelachvili; J.-M. Hartmann; J.C. Hilico; J. Hillman; G. Lefèvre; E. Lellouch; S.N. Mikhaı̈lenko; Olga V. Naumenko; Vassilii Nemtchinov; D.A. Newnham

The current version GEISA-97 of the computer-accessible database system GEISA (Gestion et Etude des Informations Spectroscopiques Atmospheriques: Management and Study of Atmospheric Spectroscopic Information) is described. This catalogue contains 1,346,266 entries. These are spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located between 0 and 22,656 cm-1. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the Giant Planets. GEISA-97 contains also a catalog of absorption cross-sections of molecules such as chlorofluorocarbons which exhibit unresolvable spectra. The modifications and improvements made to the earlier edition (GEISA-92) and the data management software are described. GEISA-97 and the associated management software are accessible from the ARA/LMD (Laboratoire de Meteorologie Dynamique du CNRS, France) web site: http://ara01.polytechnique.fr/registration.


Geophysical Research Letters | 1996

The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment: Deployment on the ATLAS space shuttle missions

M. R. Gunson; M. M. Abbas; M. C. Abrams; Mark Allen; Linda R. Brown; T. L. Brown; A. Y. Chang; A. Goldman; F. W. Irion; L. L. Lowes; Emmanuel Mahieu; G. L. Manney; H. A. Michelsen; Michael J. Newchurch; C. P. Rinsland; R. J. Salawitch; G. P. Stiller; G. C. Toon; Yuk L. Yung; Rodolphe Zander

The ATMOS Fourier transform spectrometer was flown for a fourth time on the Space Shuttle as part of the ATLAS-3 instrument payload in November 1994. More than 190 sunrise and sunset occultation events provided measurements of more than 30 atmospheric trace gases at latitudes 3–49°N and 65–72°S, including observations both inside and outside the Antarctic polar vortex. The instrument configuration, data retrieval methodology, and mission background are described to place in context analyses of ATMOS data presented in this issue.


Journal of Quantitative Spectroscopy & Radiative Transfer | 2003

Total internal partition sums for molecular species in the 2000 edition of the HITRAN database

Jonathan Fischer; Robert R. Gamache; A. Goldman; Laurence S. Rothman; A. Perrin

Abstract Total internal partition sums (TIPS) are calculated for all molecular species in the 2000 HITRAN database. In addition, the TIPS for 13 other isotopomers/isotopologues of ozone and carbon dioxide are presented. The calculations address the corrections suggested by Goldman et al. (JQSRT 66 (2000) 455). The calculations consider the temperature range 70– 3000 K to be applicable to a variety of remote sensing needs. The method of calculation for each molecular species is stated and comparisons with data from the literature are discussed. A new method of recall for the partition sums, Lagrange 4-point interpolation, is developed. This method, unlike previous versions of the TIPS code, allows all molecular species to be considered.


Applied Optics | 1981

AFGL trace gas compilation: 1982 version

Laurence S. Rothman; A. Goldman; James R. Gillis; Robert R. Gamache; Herbert M. Pickett; Robert L. Poynter; N. Husson; A. Chedin

The new edition of the AFGL trace gas compilation is described. The latest version provides the necessary parameters for the computation of absorption or emission spectra of major bands of twenty-one gases in the region from 0 to 10,000 cm−1. Emphasis on this edition has been on the addition of numerous millimeter and submillimeter transitions, the inclusion of bands of significance in upper atmospheric processes, and strong IR bands of trace constituents likely to be used for remote detection. The sources for the additions and modifications of the absorption parameters are summarized.


Journal of Geophysical Research | 1996

Validation of CH4 and N2O measurements by the cryogenic limb array etalon spectrometer instrument on the Upper Atmosphere Research Satellite

A. E. Roche; J. B. Kumer; R. W. Nightingale; John L. Mergenthaler; G. A. Ely; Paul L. Bailey; S. T. Massie; John C. Gille; David P. Edwards; M. R. Gunson; M. C. Abrams; G. C. Toon; C. R. Webster; W. A. Traub; Kenneth W. Jucks; D. G. Johnson; D. G. Murcray; F. H. Murcray; A. Goldman; E. C. Zipf

CH 4 and N 2 O are useful as dynamical tracers of stratospheric air transport because of their long photochemical lifetimes over a wide range of altitudes. The cryogenic limb array etalon spectrometer (CLAES) instrument on the NASA UARS provided simultaneous global measurements of the altitude profiles of CH 4 and N 2 O mixing ratios in the stratosphere between October 1, 1991, and May 5, 1993. Data between January 9, 1992, and May 5, 1993 (388 days), have been processed using version 7 data processing software, and this paper is concerned with the assessment of the quality of this data set. CLAES is a limb-viewing emission instrument, and approximately 1200 profiles were obtained each 24-hour period for each constituent over a nominal altitude range of 100 to 0.1 mbar (16 to 64 km). Each latitude was sampled 30 times per day between latitudes 34°S and 80°N, or 34°N and 80°S depending on the yaw direction of the UARS, and nearly all local times were sampled in about 36 days. This data set extends the altitude, latitude, and seasonal coverage of previous experiments, particularly in relation to measurements at high winter latitudes. To arrive at estimates of experiment error, we compared CLAES profiles for both gases with a wide variety of correlative data from ground-based, rocket, aircraft, balloon, and space-borne sensors, looked at the repeatability of multiple profiles in the same location, and carried out empirical estimates of experiment error based on knowledge of instrument characteristics. These analyses indicate an average single-profile CH 4 systematic error of about 15% between 46 and 0.46 mbar, with CLAES biased high. The CH 4 random error over this range is 0.08 to 0.05 parts per million, which translates to about 7% in the midstratosphere. For N 2 O the indicated systematic error is less than 15% at all altitudes between 68 and 2 mbar, with CLAES tending to be high below 6.8 mbar and low above. The N 2 O random error is 20 to 5 ppb between 46 and 2 mbar, which also translates to 7% in the low to midstratosphere. Both tracers have useful profile information to as low as 68 mbar, excluding the tropics, and as high as 0.2 mbar (CH 4 ) and 1 mbar (N 2 O). The global fields show generally good spatial correlation and exhibit the major morphological and seasonal features seen in previous global field data. Several morphological features are pointed out for regions and conditions for which there have been essentially no previous data. These include the differential behavior of the tracer isopleths near and inside the Antarctic winter vortex, and local maxima in the tropics in 1992, probably associated with the Mount Pinatubo sulfate aerosol layer. Overall, the results of this validation exercise indicate that the version 7 CH 4 and N 2 O data sets can be used with good confidence for quantitative and qualitative studies of stratospheric and lower-mesospheric atmospheric structure and dynamics.


Geophysical Research Letters | 1996

The 1994 northern midlatitude budget of stratospheric chlorine derived from ATMOS/ATLAS‐3 observations

Rodolphe Zander; Emmanuel Mahieu; M. R. Gunson; M. C. Abrams; A. Y. Chang; M. M. Abbas; C. P. Aellig; Andreas Engel; A. Goldman; F. W. Irion; Niklaus Kämpfer; H. A. Michelson; Michael J. Newchurch; C. P. Rinsland; R. J. Salawitch; G. P. Stiller; G. C. Toon

Volume mixing ratio (VMR) profiles of the chlorine-bearing gases HCl, ClONO2, CCl3F, CCl2F2, CHClF2, CCl4, and CH3Cl have been measured between 3 and 49° northern- and 65 to 72° southern latitudes with the Atmospheric Trace MOlecule Spectroscopy (ATMOS) instrument during the ATmospheric Laboratory for Applications and Science (ATLAS)-3 shuttle mission of 3 to 12 November 1994. A subset of these profiles obtained between 20 and 49°N at sunset, combined with ClO profiles measured by the Millimeter-wave Atmospheric Sounder (MAS) also from aboard ATLAS-3, measurements by balloon for HOCl, CH3CCl3 and C2Cl3F3, and model calculations for COClF indicates that the mean burden of chlorine, ClTOT, was equal to (3.53±0.10) ppbv (parts per billion by volume), 1-sigma, throughout the stratosphere at the time of the ATLAS 3 mission. This is some 37% larger than the mean 2.58 ppbv value measured by ATMOS within the same latitude zone during the Spacelab 3 flight of 29 April to 6 May 1985, consitent with an exponential growth rate of the chlorine loading in the stratosphere equal to 3.3%/yr or a linear increase of 0.10 ppbv/yr over the Spring-1985 to Fall-1994 time period. These findings are in agreement with both the burden and increase of the main anthropogenic Cl-bearing source gases at the surface during the 1980s, confirming that the stratospheric chlorine loading is primarily of anthropogenic origin.


Journal of Geophysical Research | 1999

Infrared Solar Spectroscopic Measurements of Free Tropospheric CO, C2H6, and HCN above Mauna Loa, Hawaii: Seasonal Variations and Evidence for Enhanced Emissions from the Southeast Asian Tropical Fires of 1997-1998

C. P. Rinsland; A. Goldman; F. J. Murcray; Thomas M. Stephen; Nikita S. Pougatchev; J. Fishman; Shelle J. David; R. D. Blatherwick; Paul C. Novelli; Nicholas Jones; Brian J. Connor

High spectral resolution (0.003/ cm) infrared solar absorption measurements of CO, C2H6, and HCN have been recorded at the Network for the Detection of Stratospheric Change station on Mauna Loa, Hawaii, (19.5 deg N, 155.6 deg W, altitude 3.4 km). The observations were obtained on over 250 days between August 1995 and February 1998. Column measurements are reported for the 3.4 - 16 km altitude region, which corresponds approximately to the free troposphere above the station. Average CO mixing ratios computed for this layer have been compared with flask sampling CO measurements obtained in situ at the station during the same time period. Both show asymmetrical seasonal cycles superimposed on significant variability. The first two years of observations exhibit a broad January-April maximum and a sharper CO minimum during late summer. The C2H6 and CO 3.4 - 16 km columns were highly correlated throughout the observing period with the C2H6/CO slope intermediate between higher and lower values derived from similar infrared spectroscopic measurements at 32 deg N and 45 deg S latitude, respectively. Variable enhancements in CO, C2H6, and particularly HCN were observed beginning in about September 1997. The maximum HCN free tropospheric monthly mean column observed in November 1997 corresponds to an average 3.4 - 16 km mixing ratio of 0.7 ppbv (1 ppbv = 10(exp -9) per unit volume), more than a factor of 3 above the background level. The HCN enhancements continued through the end of the observational series. Back-trajectory calculations suggest that the emissions originated at low northern latitudes in southeast Asia. Surface CO mixing ratios and the C2H6 tropospheric columns measured during the same time also showed anomalous autumn 1997 maxima. The intense and widespread tropical wild fires that burned during 3 the strong El Nino warm phase of 1997-1998 are the likely source of the elevated emission products.

Collaboration


Dive into the A. Goldman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. R. Gunson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.-M. Flaud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

M. C. Abrams

Science Applications International Corporation

View shared research outputs
Researchain Logo
Decentralizing Knowledge