Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. P. Rinsland is active.

Publication


Featured researches published by C. P. Rinsland.


Geophysical Research Letters | 2005

Atmospheric Chemistry Experiment (ACE): Mission overview

Peter F. Bernath; C. T. McElroy; M. C. Abrams; C. D. Boone; M. Butler; C. Camy-Peyret; Michel Carleer; Cathy Clerbaux; Pierre-François Coheur; Réginald Colin; P. DeCola; M. DeMazière; James R. Drummond; Denis G. Dufour; Wayne F. J. Evans; H. Fast; Didier Fussen; K. Gilbert; D. E. Jennings; E. J. Llewellyn; R. P. Lowe; Emmanuel Mahieu; J. C. McConnell; Martin J. McHugh; Sean D. McLeod; R. Michaud; Clive Midwinter; Ray Nassar; Florian Nichitiu; Caroline R. Nowlan

SCISAT-1, also known as the Atmospheric Chemistry Experiment (ACE), is a Canadian satellite mission for remote sensing of the Earths atmosphere. It was launched into low Earth circular orbit (altitude 650 km, inclination 74°) on 12 Aug. 2003. The primary ACE instrument is a high spectral resolution (0.02 cm-1) Fourier Transform Spectrometer (FTS) operating from 2.2 to 13.3 μm (750-4400 cm-1). The satellite also features a dual spectrophotometer known as MAESTRO with wavelength coverage of 285-1030 nm and spectral resolution of 1-2 nm. A pair of filtered CMOS detector arrays records images of the Sun at 0.525 and 1.02 μm. Working primarily in solar occultation, the satellite provides altitude profile information (typically 10-100 km) for temperature, pressure, and the volume mixing ratios for several dozen molecules of atmospheric interest, as well as atmospheric extinction profiles over the latitudes 85°N to 85°S. This paper presents a mission overview and some of the first scientific results. Copyright 2005 by the American Geophysical Union.


Geophysical Research Letters | 1996

The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment: Deployment on the ATLAS space shuttle missions

M. R. Gunson; M. M. Abbas; M. C. Abrams; Mark Allen; Linda R. Brown; T. L. Brown; A. Y. Chang; A. Goldman; F. W. Irion; L. L. Lowes; Emmanuel Mahieu; G. L. Manney; H. A. Michelsen; Michael J. Newchurch; C. P. Rinsland; R. J. Salawitch; G. P. Stiller; G. C. Toon; Yuk L. Yung; Rodolphe Zander

The ATMOS Fourier transform spectrometer was flown for a fourth time on the Space Shuttle as part of the ATLAS-3 instrument payload in November 1994. More than 190 sunrise and sunset occultation events provided measurements of more than 30 atmospheric trace gases at latitudes 3–49°N and 65–72°S, including observations both inside and outside the Antarctic polar vortex. The instrument configuration, data retrieval methodology, and mission background are described to place in context analyses of ATMOS data presented in this issue.


Applied Optics | 1991

ATMOS data processing and science analysis methods

R. H. Norton; C. P. Rinsland

The ATMOS (atmospheric trace molecule spectroscopy) instrument, a high speed Fourier transform spectrometer operating in the middle IR (2.2-16 microm), recorded more than 1500 solar spectra at approximately 0.0105-cm(-1) resolution during its first mission onboard the shuttle Challenger in the spring of 1985. These spectra were acquired during high sun conditions for studies of the solar atmosphere and during low sun conditions for studies of the earths upper atmosphere. This paper describes the steps by which the telemetry data were converted into spectra suitable for analysis, the analysis software and methods developed for the atmospheric and solar studies, and the ATMOS data analysis facility.


Applied Optics | 2002

Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment Version 3 data retrievals

F. W. Irion; M. R. Gunson; G. C. Toon; Albert Y. Chang; Annmarie Eldering; Emmanuel Mahieu; G. L. Manney; Hope A. Michelsen; Elizabeth J. Moyer; Michael J. Newchurch; Gregory Ben Osterman; C. P. Rinsland; R. J. Salawitch; B. Sen; Yuk L. Yung; Rodolphe Zander

Version 3 of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment data set for some 30 trace and minor gas profiles is available. From the IR solar-absorption spectra measured during four Space Shuttle missions (in 1985, 1992, 1993, and 1994), profiles from more than 350 occultations were retrieved from the upper troposphere to the lower mesosphere. Previous results were unreliable for tropospheric retrievals, but with a new global-fitting algorithm profiles are reliably returned down to altitudes as low as 6.5 km (clouds permitting) and include notably improved retrievals of H2O, CO, and other species. Results for stratospheric water are more consistent across the ATMOS spectral filters and do not indicate a net consumption of H2 in the upper stratosphere. A new sulfuric-acid aerosol product is described. An overview of ATMOS Version 3 processing is presented with a discussion of estimated uncertainties. Differences between these Version 3 and previously reported Version 2 ATMOS results are discussed. Retrievals are available at http://atmos.jpl.nasa.gov/atmos.


Geophysical Research Letters | 1996

The 1994 northern midlatitude budget of stratospheric chlorine derived from ATMOS/ATLAS‐3 observations

Rodolphe Zander; Emmanuel Mahieu; M. R. Gunson; M. C. Abrams; A. Y. Chang; M. M. Abbas; C. P. Aellig; Andreas Engel; A. Goldman; F. W. Irion; Niklaus Kämpfer; H. A. Michelson; Michael J. Newchurch; C. P. Rinsland; R. J. Salawitch; G. P. Stiller; G. C. Toon

Volume mixing ratio (VMR) profiles of the chlorine-bearing gases HCl, ClONO2, CCl3F, CCl2F2, CHClF2, CCl4, and CH3Cl have been measured between 3 and 49° northern- and 65 to 72° southern latitudes with the Atmospheric Trace MOlecule Spectroscopy (ATMOS) instrument during the ATmospheric Laboratory for Applications and Science (ATLAS)-3 shuttle mission of 3 to 12 November 1994. A subset of these profiles obtained between 20 and 49°N at sunset, combined with ClO profiles measured by the Millimeter-wave Atmospheric Sounder (MAS) also from aboard ATLAS-3, measurements by balloon for HOCl, CH3CCl3 and C2Cl3F3, and model calculations for COClF indicates that the mean burden of chlorine, ClTOT, was equal to (3.53±0.10) ppbv (parts per billion by volume), 1-sigma, throughout the stratosphere at the time of the ATLAS 3 mission. This is some 37% larger than the mean 2.58 ppbv value measured by ATMOS within the same latitude zone during the Spacelab 3 flight of 29 April to 6 May 1985, consitent with an exponential growth rate of the chlorine loading in the stratosphere equal to 3.3%/yr or a linear increase of 0.10 ppbv/yr over the Spring-1985 to Fall-1994 time period. These findings are in agreement with both the burden and increase of the main anthropogenic Cl-bearing source gases at the surface during the 1980s, confirming that the stratospheric chlorine loading is primarily of anthropogenic origin.


Applied Optics | 1996

1995 ATMOSPHERIC TRACE MOLECULE SPECTROSCOPY (ATMOS) LINELIST

Linda R. Brown; M. R. Gunson; Robert A. Toth; F. W. Irion; C. P. Rinsland; A. Goldman

The Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment uses a Fourier-transform spectrometer on board the Space Shuttle to record infrared solar occultation spectra of the atmosphere at 0.01-cm(-1) resolution. The current version of the molecular spectroscopic database used for the analysis of the data obtained during three Space Shuttle missions between 1992 and 1994 is described. It is an extension of the effort first described by Brown et al. [Appl. Opt. 26, 5154 (1987)] to maintain an up-to-date database for the ATMOS experiment. The three-part ATMOS compilation contains line parameters of 49 molecular species between 0 and 10000 cm(-1). The main list, with nearly 700,000 entries, is an updated version of the HITRAN 1992 database. The second compilation contains supplemental line parameters, and the third set consists of absorption cross sections to represent the unresolvable features of heavy molecules. The differences between the ATMOS database and other public compilations are discussed.


Geophysical Research Letters | 1996

Heavy ozone enrichments from ATMOS infrared solar spectra

F. W. Irion; M. R. Gunson; C. P. Rinsland; Yuk L. Yung; M. C. Abrams; A. Y. Chang; A. Goldman

Vertical enrichment profiles of stratospheric ^(16)O^(16)O^(18)O and ^(16)O^(18)O^(16)O (hereafter referred to as ^(668)O_3 and ^(686)O_3 respectively) have been derived from space-based solar occultation spectra recorded at 0.01 cm^(−1) resolution by the ATMOS (Atmospheric Trace MOlecule Spectroscopy) Fourier-transform infrared (FTIR) spectrometer. The observations, made during the Spacelab 3 and ATLAS-1, -2, and -3 shuttle missions, cover polar, mid-latitude and tropical regions between 26 to 2.6 mb inclusive (≈ 25 to 41 km). Average enrichments, weighted by molecular ^(48)O_3 density, of (15±6)% were found for ^(668)O_3 and (10±7)% for ^(686)O_3. Defining the mixing ratio of ^(50)O_3 as the sum of those for ^(668)O_3 and ^(686)O_3, an enrichment of (13±5)% was found for ^(50)O_3 (1σ standard deviation). No latitudinal or vertical gradients were found outside this standard deviation. From a series of ground-based measurements by the ATMOS instrument at Table Mountain, California (34.4°N), an average total column ^(668)O_3 enrichment of (17±4)% (1σ standard deviation) was determined, with no significant seasonal variation discernable. Possible biases in the spectral intensities that affect the determination of absolute enrichments are discussed.


Journal of Geophysical Research | 2006

A global inventory of stratospheric chlorine in 2004

Ray Nassar; Peter F. Bernath; Christopher David Boone; Cathy Clerbaux; Pierre-François Coheur; G. Dufour; L. Froidevaux; Emmanuel Mahieu; John C. McConnell; Sean D. McLeod; Donal P. Murtagh; C. P. Rinsland; K. Semeniuk; Randall Skelton; Kaley A. Walker; Rodolphe Zander

Total chlorine (CITOT) in the stratosphere has been determined using the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) measurements of HCl, ClONO2, CH3Cl, CCl4, CCl3F (CFC-11), CCl2F2 (CFC-12), CHClF2 (HCFC-22), CCl2FCClF2 (CFC-113), CH3CClF2 (HCFC-142b), COClF, and ClO supplemented by data from several other sources, including both measurements and models. Separate chlorine inventories were carried out in five latitude zones (60°-82°N, 30°-60°N, 30°S-30°N, 30°-60°S, and 60°-82°S), averaging the period of February 2004 to January 2005 inclusive, when possible, to deal with seasonal variations. The effect of diurnal variation was avoided by only using measurements taken at local sunset. Mean stratospheric ClTOT values of 3.65 ppbv were determined for both the northern and southern midlatitudes (with an estimated 1σ, accuracy of ±0.13 ppbv and a precision of ±.09 ppbv), accompanied by a slightly lower value in the tropics and slightly higher values at high latitudes. Stratospheric ClTOT profiles in all five latitude zones are nearly linear with a slight positive slope in ppbv /km. Both the observed slopes and pattern of latitudinal variation can be interpreted as evidence of the beginning of a decline in global stratospheric chlorine, which is qualitatively consistent with the mean stratospheric circulation pattern and time lag necessary for transport.


Applied Optics | 1984

Absolute intensity measurements of CO2 bands in the 2395-2680-cm-1 region.

V.M. Devi; C. P. Rinsland; Benner Dc

Absolute intensities for over 800 transitions belonging to twelve bands of 12C16O2, 16O12C18O, 16O12C17O, and 16O13C18O molecules in the 2395–2680-cm−1 spectral region have been derived using a nonlinear least-squares spectral fitting procedure. The data used in the analysis were recorded at room temperature and low pressure (<10 Torr) with the 0.01-cm−1 resolution Fourier transform spectrometer in the McMath solar telescope complex at the National Solar Observatory. The measured intensities obtained for each band have been analyzed to derive the vibrational band intensity and F-factor coefficients. The results are compared with other published values.


Applied Optics | 1982

Stratospheric N 2 O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880 cm −1

C. P. Rinsland; A. Goldman; F. J. Murcray; D. G. Murcray; Mary Ann H. Smith; R. K. Seals; J. C. Larsen; P. L. Rinsland

A nonlinear least-squares fitting procedure has been used to derive the stratospheric N(2)O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880 cm(-1). The atmospheric spectra were recorded during sunset from a float altitude of 33 km with the University of Denver 0.02-cm(-1) resolution interferometer near Alamogordo, N.M. (33 degrees N), on 10 Oct. 1979. The laboratory data were used to determine the N(2)O line intensities. The measurements indicate an N(2)O mixing ratio of 264 ppbv near 15 km decreasing to 155 ppbv near 28 km.

Collaboration


Dive into the C. P. Rinsland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. W. Irion

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. R. Gunson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. C. Toon

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. C. Abrams

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Y. Chang

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge