A. H. M. Faisal Anwar
Curtin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. H. M. Faisal Anwar.
Science of The Total Environment | 2017
Zahanggir Alam; A. H. M. Faisal Anwar; Dipok Chandra Sarker; Anna Heitz; Craig Rothleitner
The accumulation of wash-off solid waste, termed gross pollutants (GPs), in drainage systems has become a major constraint for best management practices (BMPs) of stormwater. GPs should be captured at source before the material clogs the drainage network, seals the infiltration capacity of side entry pits or affects the aquatic life in receiving waters. BMPs intended to reduce stormwater pollutants include oil and grit separators, grassed swales, vegetated filter strips, retention ponds, and catch basin inserts (CBIs) are used to remove GP at the source and have no extra land use requirement because they are typically mounted within a catch basin (e.g. side entry pits; grate or gully pits). In this study, a new type of CBI, recently developed by Urban Stormwater Technologies (UST) was studied for its performance at a site in Gosnells, Western Australia. This new type of CBI can capture pollutants down to particle sizes of 150μm while retaining its shape and pollutant capturing capacity for at least 1year. Data on GP and associated water samples were collected during monthly servicing of CBIs for one year. The main component of GPs was found to be vegetation (93%): its accumulation showed a strong relationship (r2=0.9) with rainfall especially during the wet season. The average accumulation of total GP load for each CBI was 384kg/ha/yr (dry mass) with the GP moisture content ranging from 24 to 52.5%. Analysis of grain sizes of GPs captured in each CBI showed similar distributions in the different CBIs. The loading rate coefficient (K) calculated from runoff and GP load showed higher K-values for CBI located near trees. The UST developed CBI in this study showed higher potential to capture GPs down to 150μm in diameter than similar CBI devices described in previous studies.
Water Science and Technology | 2016
Kadek D. Harmayani; A. H. M. Faisal Anwar
Nitrogen species (NH3-N, NO3-N, and NO2-N) are found as one of the major dissolved constituents in wastewater or stormwater runoff. In this research, laboratory experiments were conducted to remove these pollutants from the water environment using radiata pine (Pinus radiata) sawdust. A series of batch tests was conducted by varying initial concentration, dosage, particle size, pH, and contact time to check the removal performance. Test results confirmed the effectiveness of radiata pine sawdust for removing these contaminants from the aqueous phase (100% removal of NO3-N, and NO2-N; 55% removal of NH3-N). The adsorbent dosage and initial concentration showed a significantly greater effect on the removal process over pH or particle sizes. The optimum dosage for contaminant removal on a laboratory scale was found to be 12 g. Next, the adsorption kinetics were studied using intraparticle diffusion, liquid-film diffusion, and a pseudo-first order and pseudo-second order model. The adsorption of all species followed a pseudo-second order model but NO2-N adsorption followed both models. In addition, the kinetics of NO2-N adsorption showed two-step adsorption following intraparticle diffusion and liquid-film diffusion. The isotherm study showed that NO3-N and NO2-N adsorption fitted slightly better with the Freundlich model but that NH3-N adsorption followed both Freundlich and Langmuir models.
Science of The Total Environment | 2018
Zahanggir Alam; A. H. M. Faisal Anwar; Anna Heitz
Suspended solids in urban runoff have multiple adverse environmental impacts and create a wide range of water quality problems in receiving water bodies. Geotextile filtration systems inserted within catch basins have the potential to mitigate these effects, through flow attenuation and pollutant removal. This study modelled a catch basin in a column and assessed the hydraulic and solids removal characteristics of a new type of non-woven geotextile (NWG1) in the capture of solids from stormwater runoff. The new geotextile was compared with two others readily available on the market (NWG2, NWG3). Synthetic stormwater containing TSS (200mg/L) was used with two particle size distributions of 0-180μm (P1; D50:106μm) and 0-300μm (P2; D50:150μm). The results revealed that the desired stormwater TSS concentration (<30mg/L; ANZECC, 2000) could be achieved with a short ripening process (e.g., 1-2kg/m2 of suspended solids loading) for trials using the larger particle size distribution (P2). In addition, 36% more suspended solids were captured in trials using the soil with the larger range of particle sizes (P2) than for the soil with smaller particle sizes (P1). Geotextile fibre pattern appeared to have a significant influence on the TSS removal capacity. The NWG1 has higher permittivity than NWG3 but similar to NWG2. NWG1 could capture overall more TSS (which also resulted in earlier clogging) than NWG2 and NWG3 because of the special fibre structure of NWG1. The experimental data shows that these geotextiles may start to clog when the hydraulic conductivity reaches below 1.36×10-5m/s. The overall hydraulic performances of geotextiles showed that the NWG1 has better potential for use in CBIs because of its higher strength and multiple reuse capability.
Journal of Environmental Management | 2018
Zahanggir Alam; A. H. M. Faisal Anwar; Anna Heitz; Dipok Chandra Sarker
Stormwater runoff transports contaminants, including gross pollutants (GPs) accumulated on surfaces to nearby receiving water bodies. These may clog storm drainage systems, seal side entry pits and increase dissolved pollutants in receiving water bodies. Best management practices (BMPs) such as oil and grit separators, grassed swales, vegetated filter strips, retention ponds, and catch basin inserts (CBIs) are implemented to reduce stormwater pollutants in urban runoff. However, the information on physicochemical characteristics of the pollutants are still few in literature but important to improve the design of BMPs, considering qualitative aspects, and their operation. CBIs are devices used to remove GPs at source without requiring any extra land use because they are typically mounted within a catch basin (e.g. side entry pit) or existing drain. In this study, improvement of stormwater quality was investigated at two different sites (Subiaco, a residential area and Hillarys Boat Harbour, a commercial-marine-recreational area; Western Australia) where a new CBI made of non-woven polypropylene geotextile was installed in side entry pits to capture GPs at source. Influent and effluent water from the CBIs was collected and analyzed for BOD, COD, TSS and PO4-P with maximum improvements in water quality of 90%, 88%, 88% and 26% respectively. The heavy metals in influent and effluent water were found very low and below the guideline values. Analysis of particle size distribution, specific surface area of solids, SEM images and heavy metal content (Cu, Fe, Ni, Pb, Zn, Cd) in solids showed that the residential area contained more finer particles than the commercial area but that solids in the commercial area contained greater concentrations of heavy metals than those from the residential area. The specific surface area was found to be higher in the residential area and particles were thought to be largely sourced from traffic. However, these characteristics may be monitored for longer term for more CBIs installed in different locations.
Journal of Environmental Research and Development | 2008
A. H. M. Faisal Anwar
Environmental Earth Sciences | 2013
A. H. M. Faisal Anwar; Anika Yunus
Journal of Water and Environment Technology | 2010
A. H. M. Faisal Anwar; Anika Yunus
Journal of Environmental Research and Development | 2011
A. H. M. Faisal Anwar
Journal of Hydrology | 2018
Shamim Shams; A. H. M. Faisal Anwar; Kenneth W. Lamb; Mohammed Bari
Journal of environmental chemical engineering | 2018
Dipok Chandra Sarker; Chandni Manji Patel; Anna Heitz; A. H. M. Faisal Anwar