Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Heitz is active.

Publication


Featured researches published by Anna Heitz.


Environmental Science & Technology | 2012

Bioanalytical assessment of the formation of disinfection byproducts in a drinking water treatment plant

Peta A. Neale; Alice Antony; Michael Bartkow; Maria José Farré; Anna Heitz; Ina Kristiana; Janet Tang; Beate I. Escher

Disinfection of drinking water is the most successful measure to reduce water-borne diseases and protect health. However, disinfection byproducts (DBPs) formed from the reaction of disinfectants such as chlorine and monochloramine with organic matter may cause bladder cancer and other adverse health effects. In this study the formation of DBPs through a full-scale water treatment plant serving a metropolitan area in Australia was assessed using in vitro bioanalytical tools, as well as through quantification of halogen-specific adsorbable organic halogens (AOXs), characterization of organic matter, and analytical quantification of selected regulated and emerging DBPs. The water treatment train consisted of coagulation, sand filtration, chlorination, addition of lime and fluoride, storage, and chloramination. Nonspecific toxicity peaked midway through the treatment train after the chlorination and storage steps. The dissolved organic matter concentration decreased after the coagulation step and then essentially remained constant during the treatment train. Concentrations of AOXs increased upon initial chlorination and continued to increase through the plant, probably due to increased chlorine contact time. Most of the quantified DBPs followed a trend similar to that of AOXs, with maximum concentrations observed in the final treated water after chloramination. The mostly chlorinated and brominated DBPs formed during treatment also caused reactive toxicity to increase after chlorination. Both genotoxicity with and without metabolic activation and the induction of the oxidative stress response pathway showed the same pattern as the nonspecific toxicity, with a maximum activity midway through the treatment train. Although measured effects cannot be directly translated to adverse health outcomes, this study demonstrates the applicability of bioanalytical tools to investigate DBP formation in a drinking water treatment plant, despite bioassays and sample preparation not yet being optimized for volatile DBPs. As such, the bioassays are useful as monitoring tools as they provide sensitive responses even at low DBP levels.


Chemosphere | 2011

Powdered activated carbon coupled with enhanced coagulation for natural organic matter removal and disinfection by-product control: Application in a Western Australian water treatment plant

Ina Kristiana; Cynthia Joll; Anna Heitz

The removal of organic precursors of disinfection by-products (DBPs), i.e. natural organic matter (NOM), prior to disinfection and distribution is considered as the most effective approach to minimise the formation of DBPs. This study investigated the impact of the addition of powdered activated carbon (PAC) to an enhanced coagulation treatment process at an existing water treatment plant on the efficiency of NOM removal, the disinfection behaviour of the treated water, and the water quality in the distribution system. This is the first comprehensive assessment of the efficacy of plant-scale application of PAC combined with enhanced coagulation on an Australian source water. As a result of the PAC addition, the removal of NOM improved by 70%, which led to a significant reduction (80-95%) in the formation of DBPs. The water quality in the distribution system also improved, indicated by lower concentrations of DBPs in the distribution system and better maintenance of disinfectant residual at the extremities of the distribution system. The efficacy of the PAC treatment for NOM removal was shown to be a function of the characteristics of the NOM and the quality of the source water, as well as the PAC dose. PAC treatment did not have the capacity to remove bromide ion, resulting in the formation of more brominated DBPs. Since brominated DBPs have been found to be more toxic than their chlorinated analogues, their preferential formation upon PAC addition must be considered, especially in source waters containing high concentrations of bromide.


Environmental Science & Technology | 2012

Iodate and Iodo-Trihalomethane Formation during Chlorination of Iodide-Containing Waters: Role of Bromide

Justine Criquet; Sebastien Allard; Elisabeth Salhi; Cynthia Joll; Anna Heitz; Urs von Gunten

The kinetics of iodate formation is a critical factor in mitigation of the formation of potentially toxic and off flavor causing iodoorganic compounds during chlorination. This study demonstrates that the formation of bromine through the oxidation of bromide by chlorine significantly enhances the oxidation of iodide to iodate in a bromide-catalyzed process. The pH-dependent kinetics revealed species specific rate constants of k(HOBr + IO(-)) = 1.9 × 10(6) M(-1) s(-1), k(BrO(-) + IO(-)) = 1.8 × 10(3) M(-1) s(-1), and k(HOBr + HOI) < 1 M(-1) s(-1). The kinetics and the yield of iodate formation in natural waters depend mainly on the naturally occurring bromide and the type and concentration of dissolved organic matter (DOM). The process of free chlorine exposure followed by ammonia addition revealed that the formation of iodo-trihalomethanes (I-THMs), especially iodoform, was greatly reduced by an increase of free chlorine exposure and an increase of the Br(-)/I(-) ratio. In water from the Great Southern River (with a bromide concentration of 200 μg/L), the relative I-incorporation in I-THMs decreased from 18 to 2% when the free chlorine contact time was increased from 2 to 20 min (chlorine dose of 1 mg Cl(2)/L). This observation is inversely correlated with the conversion of iodide to iodate, which increased from 10 to nearly 90%. Increasing bromide concentration also increased the conversion of iodide to iodate: from 45 to nearly 90% with a bromide concentration of 40 and 200 μg/L, respectively, and a prechlorination time of 20 min, while the I-incorporation in I-THMs decreased from 10 to 2%.


Journal of Chromatography A | 2012

Simultaneous analysis of 10 trihalomethanes at nanogram per liter levels in water using solid-phase microextraction and gas chromatography mass-spectrometry.

Sebastien Allard; Jeffrey Charrois; Cynthia Joll; Anna Heitz

Trihalomethanes are predominantly formed during disinfection of water via reactions of the oxidant with natural organic matter. Even though chlorinated and brominated trihalomethanes are the most widespread organic contaminants in drinking water, when iodide is present in raw water iodinated trihalomethanes can also be formed. The formation of iodinated trihalomethanes can lead to taste and odor problems and is a potential health concern since they have been reported to be more toxic than their brominated or chlorinated analogs. Currently, there is no published standard analytical method for I-THMs in water. The analysis of 10 trihalomethanes in water samples in a single run is challenging because the iodinated trihalomethanes are found at very low concentrations (ng/L range), while the regulated chlorinated and brominated trihalomethanes are present at much higher concentrations (above μg/L). An automated headspace solid-phase microextraction technique, with a programmed temperature vaporizer inlet coupled with gas chromatography-mass spectrometry, was developed for routine analysis of 10 trihalomethanes i.e. bromo-, chloro- and iodo-trihalomethanes in water samples. The carboxen/polydimethylsiloxane/divinylbenzene fiber was found to be the most suitable. The optimization, linearity range, accuracy and precision of the method are discussed. The limits of detection range from 1 ng/L to 20 ng/L for iodoform and chloroform, respectively. Matrix effects in treated groundwater, surfacewater, seawater, and secondary wastewater were investigated and it was shown that the method is suitable for the analysis of trace levels of iodinated trihalomethanes in a wide range of waters. The method developed in the present study has the advantage of being rapid, simple and sensitive. A survey conducted throughout various process stages in an advanced water recycling plant showed the presence of iodinated trihalomethanes at ng/L levels.


Journal of Chromatography A | 2008

Rapid analysis of iodinated X-ray contrast media in secondary and tertiary treated wastewater by direct injection liquid chromatography-tandem mass spectrometry

Francesco Busetti; Kathryn L. Linge; Justin W. Blythe; Anna Heitz

The iodinated X-ray contrast media are the most widely administered intravascular pharmaceuticals and are known to persist in the aquatic environment. A rapid method using direct injection liquid chromatography-tandem mass spectrometry (DI-LC-MS/MS) has been developed to measure eight ICM. These include iopamidol, iothalamic acid, diatrizoic acid, iohexol, iomeprol, iopromide, plus both ioxaglic acid and iodipamide, which have not previously reported in the literature. The LC-MS/MS fragmentation patterns obtained for each of the compounds are discussed and the fragments lost for each transition are identified. Matrix effects in post-RO water, MQ water, tap water and secondary effluent have also been investigated. The DI-LC-MS/MS method was validated on both secondary and tertiary treated wastewater, and applied to samples from an advanced activated sludge wastewater treatment plant (WWTP) and a water recycling facility using microfiltration (MF) and reverse osmosis (RO) in Perth, Western Australia. As well as providing information of the efficacy for RO to remove specific ICM, these results also represent the first values of ICM published in the literature for Australia.


Water Research | 2013

Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter.

Ina Kristiana; Jace Tan; Cynthia Joll; Anna Heitz; Urs von Gunten; Jeffrey Charrois

N-Nitrosamines are a class of disinfection by-products (DBPs) that have been reported to be more toxic than the most commonly detected and regulated DBPs. Only a few studies investigating the formation of N-nitrosamines from disinfection of natural waters have been reported, and little is known about the role of natural organic matter (NOM) and the effects of its nature and reactivity on the formation of N-nitrosamines. This study investigated the influence of the molecular weight (MW) characteristics of NOM on the formation of eight species of N-nitrosamines from chlorination and chloramination, and is the first to report on the formation of eight N-nitrosamines from chlorination and chloramination of MW fractions of NOM. Isolated NOM from three different source waters in Western Australia was fractionated into several apparent MW (AMW) fractions using preparative-scale high performance size exclusion chromatography. These AMW fractions of NOM were then treated with chlorine or chloramine, and analysed for eight species of N-nitrosamines. Among these N-nitrosamines, N-nitrosodimethylamine (NDMA) was the most frequently detected. All AMW fractions of NOM produced N-nitrosamines upon chlorination and chloramination. Regardless of AMW characteristics, chloramination demonstrated a higher potential to form N-nitrosamines than chlorination, and a higher frequency of detection of the N-nitrosamines species was also observed in chloramination. The results showed that inorganic nitrogen may play an important role in the formation of N-nitrosamines, while organic nitrogen is not necessarily a good indicator for their formation. Since chlorination has less potential to form N-nitrosamines, chloramination in pre-chlorination mode was recommended to minimise the formation of N-nitrosamines. There was no clear trend in the formation of N-nitrosamines from chlorination of AMW fractions of NOM. However, during chloramination, NOM fractions with AMW <2.5 kDa were found to produce higher concentrations of NDMA and total N-nitrosamines. The precursor materials of N-nitrosamines appeared to be more abundant in the low to medium MW fractions of NOM, which correspond to the fractions that are most difficult to remove using conventional drinking water treatment processes. Alternative or advanced treatment processes that target the removal of low to medium MW NOM including activated carbon adsorption, biofiltration, reverse osmosis, and nanofiltration, can be employed to minimise the formation of N-nitrosamines.


Journal of Chromatography A | 2009

Analysis of pharmaceuticals in indirect potable reuse systems using solid-phase extraction and liquid chromatography-tandem mass spectrometry.

Francesco Busetti; Kathryn L. Linge; Anna Heitz

A solid-phase extraction (SPE) LC-MS/MS method for 18 commercial drugs in secondary wastewater and product water from water recycling plants using microfiltration (MF) and reverse osmosis (RO) has been developed, optimised and validated. The method incorporates a range of multi-class pharmaceuticals including lipid lowering agents, analgesics, antipyretics, non-steroidal anti-inflammatory drugs, antidepressants, anticoagulants, tranquilizers, cytostatic agents, and antiepileptics. Method limits of quantitation (MLQs) in secondary wastewater ranged from 15 to 250 ng/L, while MLQs in post-RO water ranged from 1 to 25 ng/L. Results from analysis of secondary wastewater from Western Australia are presented, and represent the largest survey of non-antibiotic pharmaceuticals within Australia to date. Analysis of post-RO water from two MF/RO water recycling facilities also demonstrate that MF/RO treatment removes most pharmaceuticals to below the analytical limits of detection, and more importantly, up to seven orders of magnitude below health-based guideline values.


Journal of Chromatography A | 2012

Determination of halonitromethanes and haloacetamides: An evaluation of sample preservation and analyte stability in drinking water

Deborah Liew; Kathryn L. Linge; Cynthia Joll; Anna Heitz; Jeffrey Charrois

Simultaneous quantitation of 6 halonitromethanes (HNMs) and 5 haloacetamides (HAAms) was achieved with a simplified liquid-liquid extraction (LLE) method, followed by gas chromatography-mass spectrometry. Stability tests showed that brominated tri-HNMs immediately degraded in the presence of ascorbic acid, sodium sulphite and sodium borohydride, and also reduced in samples treated with ammonium chloride, or with no preservation. Both ammonium chloride and ascorbic acid were suitable for the preservation of HAAms. Ammonium chloride was most suitable for preserving both HNMs and HAAms, although it is recommended that samples be analysed as soon as possible after collection. While groundwater samples exhibited a greater analytical bias compared to other waters, the good recoveries (>90%) of most analytes in tap water suggest that the method is very appropriate for determining these analytes in treated drinking waters. Application of the method to water from three drinking water treatment plants in Western Australia indicating N-DBP formation did occur, with increased detections after chlorination. The method is recommended for low-cost, rapid screening of both HNMs and HAAms in drinking water.


Journal of Analytical and Applied Pyrolysis | 2003

Off-line tetramethylammonium hydroxide thermochemolysis of model compound aliphatic and aromatic carboxylic acids:: Decarboxylation of some ortho- and/or para-substituted aromatic carboxylic acids

Cynthia Joll; Tran Huynh; Anna Heitz

Tetramethylammonium hydroxide (TMAH) thermochemolysis was performed ‘off-line’ on a wide variety of aliphatic and aromatic carboxylic acids, as model compounds for moieties present in polymeric organic materials. Simple aliphatic carboxylic acids and some aromatic carboxylic acids afforded only products of full or partial methylation. Aromatic carboxylic acids with ortho and/or para substituents which contain an unshared pair of electrons on the atom connected to the ring and which are activating to electrophilic aromatic substitution (e.g. phenoxide, hydroxy, methoxy, amino) exhibited varying degrees of decarboxylation under standard reaction conditions. Detailed reaction mechanisms to explain the formation of all key products are presented in this paper. The extent of the decarboxylation was found to be dependent upon the mole ratio of TMAH to which the model compound was exposed: a reduction in the mole ratio of TMAH to model compound reducing or eliminating the formation of decarboxylation products. These results indicate that interpretation of product mixtures from TMAH thermochemolysis of polymeric organic matter, in particular the heterogeneous humic substances, must be made with caution and the origins of hydroxy- and methoxy-benzene products must be considered to include hydroxy- and methoxy-benzoic acids.


Journal of Chromatography A | 2010

Analysis of polysulfides in drinking water distribution systems using headspace solid-phase microextraction and gas chromatography-mass spectrometry

Ina Kristiana; Anna Heitz; Cynthia Joll; Arumugam Sathasivan

Sulfide and polysulfides are strong nucleophiles and reducing agents that participate in many environmentally significant processes such as the formation of sulfide minerals and volatile organic sulfur compounds. Their presence in drinking water distribution systems are of particular concern and need to be assessed, since these species consume disinfectants and dissolved oxygen, react with metal ions to produce insoluble metal sulfides, and cause taste and odour problems. The analysis of sulfide and polysulfides in drinking water distribution systems is challenging due to their low concentrations, thermal instability and their susceptibility to undergo oxidation and disproportionation reactions. This paper reports on the development and optimisation of a rapid, simple, and sensitive method for the determination of sulfide and polysulfides in drinking water distribution systems. The method uses methyl iodide to derivatize sulfide and polysulfides into their corresponding dimethyl(poly)sulfides, which are then extracted using solid-phase microextraction in the headspace mode and analysed by gas chromatography-mass spectrometry. Good sensitivity was achieved for the analysis of dimethyl(poly)sulfides, with detection limits ranging from 50 to 240 ng L(-1). The method also demonstrated good precision (repeatability: 3-7%) and good linearity over two orders of magnitude. Matrix effects from raw drinking water containing organic carbon (3.8 mg L(-1)) and from sediment material from a drinking water distribution system were shown to have no interferences in the analysis of dimethyl(poly)sulfides. The method provides a rapid, robust, and reliable mean to analyse trace levels of sulfides and polysulfides in aqueous systems. The new method described here is more accessible and user-friendly than methods based on closed-loop stripping analysis, which have been traditionally used for the analysis of these compounds. The optimised method was used to analyse samples collected from various locations in a drinking water distribution system. Some of the samples were shown to contain inorganic polysulfides, and their presence was associated with high sediment density in the system and the absence of disinfectant residual in the bulk water.

Collaboration


Dive into the Anna Heitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Urs von Gunten

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge