A. Héron
École Polytechnique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Héron.
Physics of Plasmas | 2004
J. C. Adam; A. Héron; G. Laval
Stationary plasma thrusters are devices that use crossed electric and magnetic fields to accelerate ions to high velocities. Ions are created by collisional ionization of a propellant gas with electrons injected from a hollow cathode external to the thruster. A major issue is the electron transport through the magnetic field. It is known to exceed considerably the values predicted by the classical theory. Various 2D models have shown that wall collisions, which have often been invoked as the origin of this anomalous transport, are in fact insufficient. Anomalous turbulent transport has to be added to the model to recover an adequate conductivity. In the present paper the first 2D kinetic model that shows that, indeed, plasma turbulence can explain the observed conductivity is presented. Without any free parameter the model is able to reproduce numerous experimental features. At the end of the paper a preliminary theoretical analysis of the observed instability is provided.
Physics of Plasmas | 1995
S. Guérin; G. Laval; P. Mora; J. C. Adam; A. Héron; A. Bendib
A large amplitude electromagnetic wave propagating in a plasma is known to be subject to severe modulational and Raman instabilities. Previous works were devoted to the weakly relativistic limit and applied mainly to a cold underdense plasma. One extends these works to include the fully relativistic limit for a circularly polarized light for which one derives the dispersion relation in a one‐dimensional plasma. The characteristics of the instabilities are also calculated in the case where the plasma is classically overdense, with 1<(ωp/ω0)2<γ, where ωp is the plasma frequency, ω0 is the laser frequency, and γ is the relativistic factor of an electron in the laser field. Particle‐in‐cell simulations confirm the results of the numerical solutions of the dispersion relation. For (ωp/ω0)2/γ=0.57 the growth rate can be as large as 0.52ω0. The nonlinear stage of the instability results in a strong heating of the electron distribution function. The theory is further extended to the case of an initially hot plasm...
Physics of Plasmas | 2004
J.-L. Vay; Phillip Colella; Joe W. Kwan; Peter McCorquodale; D. B. Serafini; A. Friedman; D.P. Grote; G. Westenskow; J. C. Adam; A. Héron; I. Haber
Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation domain, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations, and present examples of application in Heavy Ion Fusion and related fields which illustrate the effectiveness of the approach. We also report on the status of a collaboration under way at Lawrence Berkeley National Laboratory between the Applied Numerical Algorithms Group (ANAG) and the Heavy Ion Fusion group to upgrade ANAGs mesh refinement library Chombo to include the tools needed by Particle-In-Cell simulation codes.
Physics of Plasmas | 1996
S. Guérin; P. Mora; J. C. Adam; A. Héron; G. Laval
Due to relativistic effects, a large amplitude electromagnetic wave can propagate in a classically overdense plasma with ω2p≳ω2≳ω2p/γ, where ωp is the plasma frequency, ω the laser frequency, and γ the relativistic factor of an electron in the laser field. Particle‐in‐cell simulations are used to study the interaction of an ultrahigh intensity laser pulse in normal incidence on a one‐dimensional preformed plasma layer. Both electrons and ions dynamics are included. The width of the layer is 10 to 30 μm and the plasma is characterized by (ωp/ω)2=1.5. During the penetration of the electromagnetic wave a large longitudinal electric field is generated. It results in a strong longitudinal heating of electrons which reach relativistic temperatures. This heating further lowers the effective plasma frequency ωp/γ so the layer becomes almost transparent after the plasma crossing by the wave front. Velocity of the wave front, reflection and transmission rates are studied as functions of the incident energy flux, th...
Physical Review Letters | 2013
T. Ceccotti; V. Floquet; Andrea Sgattoni; Alessandra Bigongiari; O. Klimo; M. Raynaud; C. Riconda; A. Héron; F. Baffigi; L. Labate; L. A. Gizzi; L. Vassura; J. Fuchs; M. Passoni; M. Květon; F. Novotny; M. Possolt; J. Prokůpek; J. Proska; J. Psikal; L. Stolcova; A. Velyhan; M. Bougeard; P. D’Oliveira; O. Tcherbakoff; F. Réau; Philippe Martin; Andrea Macchi
The interaction of laser pulses with thin grating targets, having a periodic groove at the irradiated surface, is experimentally investigated. Ultrahigh contrast (~10(12)) pulses allow us to demonstrate an enhanced laser-target coupling for the first time in the relativistic regime of ultrahigh intensity >10(19) W/cm(2). A maximum increase by a factor of 2.5 of the cutoff energy of protons produced by target normal sheath acceleration is observed with respect to plane targets, around the incidence angle expected for the resonant excitation of surface waves. A significant enhancement is also observed for small angles of incidence, out of resonance.
Physics of Plasmas | 2011
C. Riconda; S. Weber; V. T. Tikhonchuk; A. Héron
A detailed description of stimulated Raman backscattering and related processes for the purpose of inertial confinement fusion requires multi-dimensional kinetic simulations of a full speckle in a high-temperature, large-scale, inhomogeneous plasma. In particular for the shock-ignition scheme operating at high laser intensities, kinetic aspects are predominant. High- (Iλo2~5×1015Wμm2/cm2) as well as low-intensity (Iλo2~1015Wμm2/cm2) cases show the predominance of collisionless, collective processes for the interaction. While the two-plasmon decay instability and the cavitation scenario are hardly affected by intensity variation, inflationary Raman backscattering proves to be very sensitive. Brillouin backscattering evolves on longer time scales and dominates the reflectivities, although it is sensitive to the intensity. Filamentation and self-focusing do occur for all cases but on time scales too long to affect Raman backscattering.
Physics of fluids. B, Plasma physics | 1992
W. Rozmus; Michel Casanova; D. Pesme; A. Héron; J.‐C. Adam
The effect of ion sound wave (ISW) nonlinearities on the stimulated Brillouin scattering (SBS) in long plasmas is investigated within the framework of the Korteweg–de Vries–Maxwell equations. The nonlinear evolution of the driven ISW results in the localization of the ion density on a scale shorter than the wavelength (λs) of the resonant ISW satisfying SBS three‐wave matching conditions. Since the transverse wave amplitudes vary on a much longer scale, a local–global modeling of SBS is proposed in which this scale separation is exploited. The local part of the procedure includes a solution to the damped KdV equation with periodic boundary conditions and driven by a constant amplitude ponderomotive force. In the global part of the analysis approximate solutions for the transverse waves in long plasmas are constructed using the results from the local part. Particle‐in‐cell simulations have been performed in order to investigate the importance of kinetic effects for the local model. Numerical results obtain...
Physics of Plasmas | 2007
M. Raynaud; J. Kupersztych; C. Riconda; J. C. Adam; A. Héron
Two-dimensional (2D) particle-in-cell numerical simulations of the interaction between a high-intensity short-pulse p-polarized laser beam and an overdense plasma are presented. It is shown that, under appropriate physical conditions, a surface plasma wave can be resonantly excited by a short-pulse laser wave, leading to strong relativistic electron acceleration together with a dramatic increase, up to 70%, of light absorption by the plasma. Purely 2D effects contribute to enhancement of electron acceleration. It is also found that the angular distribution of the hot electrons is drastically affected by the surface wave. The subsequent ion dynamics is shown to be significantly modified by the surface plasma wave excitation.
Physics of Plasmas | 2005
H. Popescu; S. D. Baton; F. Amiranoff; C. Rousseaux; M. Rabec Le Gloahec; J. J. Santos; L. Gremillet; M. Koenig; E. Martinolli; T. Hall; J. C. Adam; A. Héron; D. Batani
Harmonics of the laser light have been observed from the rear side of solid targets irradiated by a laser beam at relativistic intensities. This emission evidences the acceleration of subfemtosecond electron bunches by the laser pulse in front of the target. These bunches emit coherent transition radiation (CTR) when passing through the back surface of the target. The spectral features of the signal recorded for targets of thicknesses up to several hundred microns are consistent with the electrons being accelerated by both the laser electric field—via vacuum heating and/or resonance absorption,—and the v×B component of the Lorentz force. The spatial study of the radiation shows that the relativistic electrons causing the CTR radiation are coherent and propagate ballistically through the target, originating from a source with a size of the order of the laser focal spot.
Physics of Plasmas | 1997
B. Quesnel; P. Mora; J. C. Adam; A. Héron; G. Laval
The dispersion relation for electron parametric instabilities of a circularly polarized laser wave of arbitrary intensity is established without restrictions on the plasma density. It is obtained in an implicit analytical form and solved numerically. The well-known stimulated Raman scattering, relativistic modulational instability, relativistic filamentation instability, and two-plasmon decay are recovered at low intensity. Their behavior in the ultrarelativistic regime is characterized by a wide extent of the unstable region in the wave vector space, with growth rates equal to a fraction of the laser frequency, and a strong harmonic generation. Particle-in-cell simulations confirm these results and show that the instability leads to a very strong heating of the plasma.