Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. J. Palmateer is active.

Publication


Featured researches published by A. J. Palmateer.


Transgenic Research | 2011

Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain

Jane Vishnevetsky; Thomas L. White; A. J. Palmateer; Moshe A. Flaishman; Yuval Cohen; Yigal Elad; Margarita Velcheva; Uri Hanania; Nachman Sahar; Oded Dgani; Avihai Perl

The most devastating disease currently threatening to destroy the banana industry worldwide is undoubtedly Sigatoka Leaf spot disease caused by Mycosphaerella fijiensis. In this study, we developed a transformation system for banana and expressed the endochitinase gene ThEn-42 from Trichoderma harzianum together with the grape stilbene synthase (StSy) gene in transgenic banana plants under the control of the 35S promoter and the inducible PR-10 promoter, respectively. The superoxide dismutase gene Cu,Zn-SOD from tomato, under control of the ubiquitin promoter, was added to this cassette to improve scavenging of free radicals generated during fungal attack. A 4-year field trial demonstrated several transgenic banana lines with improved tolerance to Sigatoka. As the genes conferring Sigatoka tolerance may have a wide range of anti-fungal activities we also inoculated the regenerated banana plants with Botrytis cinerea. The best transgenic lines exhibiting Sigatoka tolerance were also found to have tolerance to B. cinerea in laboratory assays.


Plant Disease | 2009

First Report of Downy Mildew Caused by a Peronospora sp. on Basil in Florida and the United States

Pamela D. Roberts; Richard N. Raid; Philip F. Harmon; Stephen A. Jordan; A. J. Palmateer

Basil is grown as a specialty crop in greenhouse and field production in Florida and other regions of the United States. Downy mildew on basil (Ocimum basilicum) was detected from four production sites (Collier, Hendry, Miami-Dade, and Palm Beach counties) in south Florida in the fall of 2007, and within months, it was also found in west-central north Florida (Hillsborough County). Incidence reached nearly 100% on some of the affected crops and caused complete yield losses on basil grown both in the field for fresh market and potted herbs market. Symptoms developed during transit on basil that appeared symptomless at harvest. Symptoms initially appeared as yellowing on the lower leaves that was typically delineated by the veins, although in some cases the entire leaf area of the leaf surface was affected. A gray, fuzzy growth was apparent on the abaxial leaf surface. Microscopic observation detected dichotomous branching, hyaline sporangiophores (220 to 750 × 4 to 9 μm) bearing single sporangia. Sporangia were light brown, ovoid to slightly ellipsoid, and measured 14 to 15 × 15 to 18 μm. Oospores were not observed. Leaves of potted basil plants and coleus (Solenostemon scutellarioides) were inoculated with a suspension containing 1 × 105 sporangia/ml and sprayed till runoff (approximately 15 ml per plant) with a hand-held pressurized aerosol canister. Plants were covered with a plastic bag for 24 h and maintained in the greenhouse under ambient conditions. Noninoculated plants served as controls. After 7 days, symptoms typical of downy mildew occurred only on the inoculated basil plants and sporulation was confirmed microscopically. The internal transcribed spacer regions of an isolate collected in Hendry County were sequenced bidirectionally. The consensus sequence was deposited into GenBank (Accession No. FJ346561). Sequence data matched (100% homology) with a Peronospora sp. reported on sweet basil in Switzerland (GenBank Accession No. AY884605) and was similar (99% homology) to an isolate (GenBank Accession No. DQ523586) reported on coleus, although inoculation to coleus failed to confirm pathogenicity on this host. The sequence data also distinguished the isolate from P. lamii (87% homology) previously reported to occur on basil. The pathogen was identified as a Peronospora sp. based on morphological characteristics and sequencing homology (1-3). References: (1) L. Belbahri et al. Mycol. Res. 109:1276, 2005. (2) S. Francis. CMI Descriptions of Pathogenic Fungi and Bacteria. No. 688. CMI, Kew, England, 1981. (3) A. McLeod et al. Plant Dis. 90:1115, 2006.


Plant Disease | 2014

Development of Multilocus PCR Assays for Raffaelea lauricola, Causal Agent of Laurel Wilt Disease

T. J. Dreaden; John M. Davis; Randy C. Ploetz; A. J. Palmateer; Pamela S. Soltis; Jason A. Smith

Laurel wilt, caused by the fungus Raffaelea lauricola, is an exotic disease that affects members of the Lauraceae plant family in the southeastern United States. The disease is spreading rapidly in native forests and is now found in commercial avocado groves in south Florida, where an accurate diagnostic method would improve disease management. A polymerase chain reaction (PCR) method based on amplifying the ribosomal small-subunit DNA, with a detection limit of 0.0001 ng, was found to be suitable for some quantitative PCR applications; however, it was not taxon specific. Genomic sequencing of R. lauricola was used to identify and develop primers to amplify two taxon-specific simple-sequence repeat (SSR) loci, which did not amplify from related taxa or host DNA. The new SSR loci PCR assay has a detection limit of 0.1 ng of R. lauricola DNA, is compatible with traditional and real-time PCR, was tested in four labs to confirm consistency, and reduces diagnostic time from 1 week to 1 day. Our work illustrates pitfalls to designing taxon-specific assays for new pathogens and that undescribed fungi can limit specificity.


Florida Entomologist | 2010

Silwet L-77 Improves the Efficacy of Horticultral Oils for Control of Boisduval Scale Diaspis boisduvalii (Hemiptera: Diaspididae) and the Flat Mite Tenuipalpus pacificus (Arachnida: Acari: Tenuipalpidae) on Orchids

R. A. Cating; Marjorie A. Hoy; A. J. Palmateer

ABSTRACT Pest management of insects and mites on orchids has been based on the use of synthetic organic pesticides. However, less-toxic chemical control is needed by hobbyists and small growers. Orchids from 8 genera were treated with Silwet L-77 alone and no evidence of phytotoxicity was seen. Subsequently, 3 petroleum oils in combination with Silwet L-77 were tested to determine efficacy in suppressing Boisduval scale Diaspis boisduvalii Signoret (Hemiptera: Diaspididae) and the flat mite Tenuipalpus pacificus Baker (Arachnida: Acari: Tenuipalpidae). The results indicate Silwet L-77 increased toxicity of the oils and increased removal of the scales and mites from foliage over oil alone, yet no phytotoxicity was observed in any of the plants treated. Petroleum oil + Silwet L-77 is considered low-toxic, may be less expensive than some pesticides, and may conserve natural enemies, making it a potential addition to an integrated pest management program for orchids.


Plant Disease | 2009

First Report of Sclerotium rolfsii on Ascocentrum and Ascocenda Orchids in Florida

R. A. Cating; A. J. Palmateer; R. T. McMillan

Southern blight caused by Sclerotium rolfsii is known to occur on several economically important orchid hosts, including Vanda species and hybrids (1-3). In the summer and fall of 2008, an outbreak of southern blight on Vanda orchids was seen in several commercial nurseries and landscapes throughout South Florida. More than a dozen orchids were affected at one of the locations, and symptoms of S. rolfsii were observed on Ascocentrum and Ascocenda orchids, which are also common in the trade and demand a resale value ranging from


Plant Disease | 2009

Influence of temperature, light intensity, and isolate on the development of Neofusicoccum parvum-induced dieback of Eugenia, Syzygium paniculatum.

Randy C. Ploetz; José M. Pérez-Martínez; A. J. Palmateer; T. L. B. Tarnowski

20 to


Plant Disease | 2012

A Comparison of Standard and High-Fidelity PCR: Evaluating Quantification and Detection of Pathogen DNA in the Presence of Orchid Host Tissue

R. A. Cating; Marjorie A. Hoy; A. J. Palmateer

150 for specimens in bloom. Affected Ascocentrum and Ascocenda orchids were found severely wilted at the apex, while around the base of the plants, tan, soft, water-soaked lesions were present. As the lesions progressed, leaves around the base of the plants began to fall off, leaving the stems bare. After 2 days, white, flabellate mycelium was seen progressing up the stem and numerous, tan-to-brown sclerotia were present. Leaves and portions of the stems were plated on acidified potato dextrose agar (APDA) and grown at 25°C. White, flabellate mycelium and tan sclerotia approximately 2 mm in diameter were produced in culture and microscopic examination revealed the presence of clamp connections. The fungus was identified as S. rolfsii and a voucher specimen was deposited with the ATCC. A PCR was performed on the ITS1, 5.8S rDNA, and ITS2 and the sequence was deposited in GenBank (Accession No. GQ358518). Pathogenicity of an isolate was tested by placing 6-mm plugs taken from APDA plates directly against the stem of five different Ascocentrum and Ascocenda orchids. Five Ascocentrum and Ascocenda orchids were inoculated with 6-mm plugs of plain APDA and five were untreated controls. Plants were housed under 50% shade, 60 to 95% humidity, and temperatures ranging from 75 to 88°F. Within 7 days, all inoculated plants developed symptoms that were identical to those observed on original plants and S. rolfsii was consistently reisolated from symptomatic tissue. Ascocentrum and Ascocenda were previously reported under miscellaneous orchid species and hybrids as hosts for S. rolfsii (1). However, this report was highly ambiguous and the most current edition does not report the host fungus combination (2). To our knowledge, this is the first report of S. rolfsii affecting Ascocentrum and Ascocenda orchids. References: (1) S. A. Alfieri, Jr., et al. Diseases and Disorders of Plants in Florida. Bull. No. 11. Division of Plant Industry, Gainesville, FL, 1984. (2) S. A. Alfieri, Jr., et al. Diseases and Disorders of Plants in Florida. Bull. No. 14. Division of Plant Industry, Gainesville, FL, 1994. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989.


Plant Disease | 2012

First report of Colletotrichum sansevieriae causing anthracnose of Sansevieria trifasciata in Florida.

A. J. Palmateer; T. L. B. Tarnowski; P. Lopez

Syzygium paniculatum (Myrtaceae) is an important plant in the South Florida ornamental industry. Known as eugenia in the trade, the plant was relatively free of diseases before Hurricane Wilma (2005). Since then, a serious dieback disease has become prevalent in local nurseries, especially during late summer. Symptoms included wilting and death of terminal and lateral branches, and vascular discoloration in dead and dying branches and the main stem. Several fungi were isolated from diseased plants, but Neofusicoccum parvum was usually the only fungus isolated from symptomatic tissue. Most isolates were sterile, but all that were tested produced significant (P < 0.05) dieback on, and reduced growth of, the cultivar Monterrey Bay. Glomerella spp. and a Pestalotiopsis sp. that were recovered from asymptomatic portions of diseased plants and Mycoleptodiscus terrestris recovered from healthy liners of Monterrey Bay did not cause dieback symptoms in pathogenicity studies or affect host growth. In incubator studies, N. parvum caused significant external symptoms, vascular discoloration, and mortality at 25 and 30°C; in general, only vascular symptoms developed at 20°C and no symptoms developed at 15°C. Thus, temperature may be associated with the seasonal development of this disease. Significant differences in disease development were not observed under a wide range of light intensities (2,000 to 300 μmol s-1 m-2). S. paniculatum is a new host record for N. parvum.


Plant Disease | 2010

First Report of Fruit Rot on Hylocereus undatus Caused by Bipolaris cactivora in South Florida

T. L. B. Tarnowski; A. J. Palmateer; Jonathan H. Crane

The polymerase chain reaction (PCR) has been used with increasing frequency for detecting and identifying plant pathogens. Although PCR is sensitive, research has shown that amplification of target microbial DNA from within another organism, such as an arthropod or plant, can be inhibited by the presence of host DNA. In this study, the sensitivity of standard and high-fidelity PCR, which incorporates a second DNA polymerase with proofreading ability, to detect and amplify DNA from the fungal pathogen Pseudocercospora odontoglossi while in the presence of Cattleya orchid DNA, was compared. Different dilutions of plasmids containing internal transcribed spacer (ITS)1, 5.8S, and ITS2 rDNA from P. odontoglossi were spiked with Cattleya orchid plant DNA. The high-fidelity PCR could detect and amplify as few as 207 plasmids containing the fungal DNA, whereas the standard PCR required over 200 million copies. The high-fidelity PCR was more efficient than conventional PCR in detecting Sclerotium rolfsii and a Dickeya sp. from freshly inoculated orchid plants, demonstrating its increased sensitivity in early detection of fungal and bacterial pathogens that are difficult to discriminate early in disease development.


Plant Disease | 2009

First Report of a Bacterial Soft Rot on Tolumnia Orchids Caused by a Dickeya sp. in the United States

R. A. Cating; A. J. Palmateer; R. T. McMillan

Sansevieria Thunberg, a member of the Agavaceae, contains around 60 species indigenous to Africa, Arabia, and India. Several species and their cultivars are commercially produced for use as interior and landscape foliage plants. During August 2010, several local nurseries submitted Sansevieria trifasciata samples to the Florida Extension Plant Diagnostic Clinic in Homestead. Leaves had round, water-soaked lesions and as the disease progressed, lesions rapidly enlarged and coalesced, resulting in severe leaf blight. Both young and mature leaves were affected. Closer examination of mature lesions revealed numerous brownish black acervuli that were produced in concentric rings, which is characteristic of anthracnose. The fungus was identified as Colletotrichum sansevieriae Nakamura based on typical cultural characteristics, conidial and appressoria morphology (1). Conidia were straight, cylindrical, obtuse at the apex, slightly acute at the base with a truncate attachment point, and 12.5 to 33 (18.4) × 4 to 8.9 (6.5) μm (n = 50). Hyphopodia were ovate, dark brown, single celled, and 6.2 to 8.7 (7.7) × 6.3 to 7.5 (7.3) μm (n = 25). Colonies on potato dextrose agar (PDA) were grayish white, felted with aerial mycelium, reverse gray to dark olivaceous gray, and partly cream in color. Sequences of the rDNA internal transcribed spacer (ITS) regions of two isolates (GenBank Accession Nos. JF911349 and JF911350) exhibited 99% nucleotide identity to an isolate of C. sansevieriae (GenBank Accession No. HQ433226) collected from diseased sansevieria in Australia. In addition, a maximum parsimony analysis (MEGA v.5.0) indicates that the two C. sansevieriae isolates from Florida are monophyletic (86% bootstrap support) with the type species from Japan (SA-1-2 AB212991; SA-1-1 AB212990) and the Australian isolate. Pathogenicity of our sequenced isolates was evaluated in greenhouse experiments. Twelve- to fourteen-week-old sansevieria plants were inoculated with conidial suspensions (1 × 106 conidia/ml) of C. sansevieriae. Inoculum or autoclaved water was sprayed over the foliage until runoff. Four plants of each of two economically important cultivars, Laurentii and Moonshine, were sprayed per treatment and the experiment was repeated twice. Inoculated plants were placed in a greenhouse at 29°C with 70 to 85% relative humidity. Plants were observed for disease development, which occurred within 10 days of inoculation for both cultivars. No symptoms developed on the control plants. Foliar lesions closely resembled those observed in the affected nurseries. C. sansevieriae was consistently reisolated from symptomatic tissue collected from greenhouse experiments. On the basis of molecular phylogenetics and distinguishing morphological characters, Nakamura et al. erected C. sansevieriae as a novel species that appears to be restricted to the host sansevieria (1). To our knowledge, this is the first report of C. sansevieriae causing anthracnose of sansevieria in Florida. Reference: (1) M. Nakamura et al. J. Gen. Plant Pathol. 72:253, 2006.

Collaboration


Dive into the A. J. Palmateer's collaboration.

Top Co-Authors

Avatar

P. Lopez

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge