Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. J. Shaw is active.

Publication


Featured researches published by A. J. Shaw.


Evolution | 2003

PHYLOGENETIC EVIDENCE OF A RAPID RADIATION OF PLEUROCARPOUS MOSSES (BRYOPHYTA)

A. J. Shaw; Cymon J. Cox; Bernard Goffinet; William R. Buck; Sandra B. Boles

Abstract Pleurocarpous mosses, characterized by lateral female gametangia and highly branched, interwoven stems, comprise three orders and some 5000 species, or almost half of all moss diversity. Recent phylogenetic analyses resolve the Ptychomniales as sister to the Hypnales plus Hookeriales. Species richness is highly asymmetric with approximately 100 Ptychomniales, 750 Hookeriales, and 4400 Hypnales. Chloroplast DNA (cpDNA) sequences were obtained to compare partitioning of molecular diversity among the orders with estimates of species richness, and to test the hypothesis that either the Hookeriales or Hypnales underwent a period (or periods) of exceptionally rapid diversification. Levels of biodiversity were quantified using explicitly historical “phylogenetic diversity” and non‐historical estimates of standing sequence diversity. Diversification rates were visualized using lineage‐through‐time (LTT) plots, and statistical tests of alternative diversification models were performed using the methods of Paradis (1997). The effects of incomplete sampling on the shape of LTT plots and performance of statistical tests were investigated using simulated phylogenies with incomplete sampling. Despite a much larger number of accepted species, the Hypnales contain lower levels of (cpDNA) biodiversity than their sister group, the Hookeriales, based on all molecular measures. Simulations confirm previous results that incomplete sampling yields diversification patterns that appear to reflect a decreasing rate through time, even when the true phylogenies were simulated with constant rates. Comparisons between simulated results and empirical data indicate that a constant rate of diversification cannot be rejected for the Hookeriales. The Hypnales, however, appear to have undergone a period of exceptionally rapid diversification for the earliest 20% of their history.


Molecular Ecology | 2008

Recent divergence, intercontinental dispersal and shared polymorphism are shaping the genetic structure of amphi‐Atlantic peatmoss populations

Péter Szövényi; S. Terracciano; M. Ricca; S. Giordano; A. J. Shaw

Several lines of evidence suggest that recent long‐distance dispersal may have been important in the evolution of intercontinental distribution ranges of bryophytes. However, the absolute rate of intercontinental migration and its relative role in the development of certain distribution ranges is still poorly understood. To this end, the genetic structure of intercontinental populations of six peatmoss species showing an amphi‐Atlantic distribution was investigated using microsatellite markers. Methods relying on the coalescent were applied (im and migrate) to understand the evolution of this distribution pattern in peatmosses. Intercontinental populations of the six peatmoss species were weakly albeit significantly differentiated (average FST = 0.104). This suggests that the North Atlantic Ocean is acting as a barrier to gene flow even in bryophytes adapted to long‐range dispersal. The im analysis suggested a relatively recent split of intercontinental populations dating back to the last two glacial periods (9000–289 000 years ago). In contrast to previous hypotheses, analyses indicated that both ongoing migration and ancestral polymorphism are important in explaining the intercontinental genetic similarity of peatmoss populations, but their relative contribution varies with species. Migration rates were significantly asymmetric towards America suggesting differential extinction of genotypes on the two continents or invasion of the American continent by European lineages. These results indicate that low genetic divergence of amphi‐Atlantic populations is a general pattern across numerous flowering plants and bryophytes. However, in bryophytes, ongoing intercontinental gene flow and retained shared ancestral polymorphism must both be considered to explain the genetic similarity of intercontinental populations.


Nature Communications | 2014

Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts

Benjamin Laenen; Blanka Shaw; Harald Schneider; Bernard Goffinet; Emmanuel Paradis; Aurélie Désamoré; Jochen Heinrichs; Juan Carlos Villarreal; S. R. Gradstein; Stuart F. McDaniel; David G. Long; Laura L. Forrest; Michelle L. Hollingsworth; Barbara Crandall-Stotler; E. C. Davis; John J. Engel; M. von Konrat; Endymion D. Cooper; Jairo Patiño; Cymon J. Cox; Alain Vanderpoorten; A. J. Shaw

Unraveling the macroevolutionary history of bryophytes, which arose soon after the origin of land plants but exhibit substantially lower species richness than the more recently derived angiosperms, has been challenged by the scarce fossil record. Here we demonstrate that overall estimates of net species diversification are approximately half those reported in ferns and ∼30% those described for angiosperms. Nevertheless, statistical rate analyses on time-calibrated large-scale phylogenies reveal that mosses and liverworts underwent bursts of diversification since the mid-Mesozoic. The diversification rates further increase in specific lineages towards the Cenozoic to reach, in the most recently derived lineages, values that are comparable to those reported in angiosperms. This suggests that low diversification rates do not fully account for current patterns of bryophyte species richness, and we hypothesize that, as in gymnosperms, the low extant bryophyte species richness also results from massive extinctions.


Molecular Phylogenetics and Evolution | 2010

Peatmoss (Sphagnum) diversification associated with Miocene Northern Hemisphere climatic cooling

A. J. Shaw; Nicolas Devos; Cymon J. Cox; Sandra B. Boles; Blanka Shaw; A. M. Buchanan; L. Cave; R. Seppelt

Global climate changes sometimes spark biological radiations that can feed back to effect significant ecological impacts. Northern Hemisphere peatlands dominated by living and dead peatmosses (Sphagnum) harbor almost 30% of the global soil carbon pool and have functioned as a net carbon sink throughout the Holocene, and probably since the late Tertiary. Before that time, northern latitudes were dominated by tropical and temperate plant groups and ecosystems. Phylogenetic analyses of mosses (phylum Bryophyta) based on nucleotide sequences from the plastid, mitochondrial, and nuclear genomes indicate that most species of Sphagnum are of recent origin (ca. <20 Ma). Sphagnum species are not only well-adapted to boreal peatlands, they create the conditions that promote development of peatlands. The recent radiation that gave rise to extant diversity of peatmosses is temporally associated with Miocene climatic cooling in the Northern Hemisphere. The evolution of Sphagnum has had profound influences on global biogeochemistry because of the unique biochemical, physiological, and morphological features of these plants, both while alive and after death.


American Journal of Botany | 2010

Newly resolved relationships in an early land plant lineage: Bryophyta class Sphagnopsida (peat mosses)

A. J. Shaw; Cymon J. Cox; William R. Buck; Nicolas Devos; A. M. Buchanan; L. Cave; R. Seppelt; Blanka Shaw; Juan Larraín; Richard E. Andrus; Johann Greilhuber; Eva M. Temsch

UNLABELLED PREMISE OF THE STUDY The Sphagnopsida, an early-diverging lineage of mosses (phylum Bryophyta), are morphologically and ecologically unique and have profound impacts on global climate. The Sphagnopsida are currently classified in two genera, Sphagnum (peat mosses) with some 350-500 species and Ambuchanania with one species. An analysis of phylogenetic relationships among species and genera in the Sphagnopsida were conducted to resolve major lineages and relationships among species within the Sphagnopsida. • METHODS Phylogenetic analyses of nucleotide sequences from the nuclear, plastid, and mitochondrial genomes (11 704 nucleotides total) were conducted and analyzed using maximum likelihood and Bayesian inference employing seven different substitution models of varying complexity. • KEY RESULTS Phylogenetic analyses resolved three lineages within the Sphagnopsida: (1) Sphagnum sericeum, (2) S. inretortum plus Ambuchanania leucobryoides, and (3) all remaining species of Sphagnum. Sister group relationships among these three clades could not be resolved, but the phylogenetic results indicate that the highly divergent morphology of A. leucobryoides is derived within the Sphagnopsida rather than plesiomorphic. A new classification is proposed for class Sphagnopsida, with one order (Sphagnales), three families, and four genera. • CONCLUSIONS The Sphagnopsida are an old lineage within the phylum Bryophyta, but the extant species of Sphagnum represent a relatively recent radiation. It is likely that additional species critical to understanding the evolution of peat mosses await discovery, especially in the southern hemisphere.


Molecular Ecology | 2011

One haploid parent contributes 100% of the gene pool for a widespread species in northwest North America.

Eric F. Karlin; R. E. Andrus; Sandra B. Boles; A. J. Shaw

The monoicous peatmoss Sphagnum subnitens has a tripartite distribution that includes disjunct population systems in Europe (including the Azores), northwestern North America and New Zealand. Regional genetic diversity was highest in European S. subnitens but in northwestern North America, a single microsatellite‐based multilocus haploid genotype was detected across 16 sites ranging from Coos County, Oregon, to Kavalga Island in the Western Aleutians (a distance of some 4115 km). Two multilocus haploid genotypes were detected across 14 sites on South Island, New Zealand. The microsatellite‐based regional genetic diversity detected in New Zealand and North American S. subnitens is the lowest reported for any Sphagnum. The low genetic diversity detected in both of these regions most likely resulted from a founder event associated with vegetative propagation and complete selfing, with one founding haploid plant in northwest North America and two in New Zealand. Thus, one plant appears to have contributed 100% of the gene pool for the population systems of S. subnitens occurring in northwest North America, and this is arguably the most genetically uniform group of plants having a widespread distribution yet detected. Although having a distribution spanning 12.5° of latitude and 56° of longitude, there was no evidence of any genetic diversification in S. subnitens in northwest North America. No genetic structure was detected among the three regions, and it appears that European plants of S. subnitens provided the source for New Zealand and northwest North American populations.


Molecular Ecology | 2009

Three‐genome mosses: complex double allopolyploid origins for triploid gametophytes in Sphagnum

Eric F. Karlin; Sandra B. Boles; M. Ricca; Eva M. Temsch; Johann Greilhuber; A. J. Shaw

This paper documents the occurrence of allotriploidy (having three differentiated genomes) in gametophytes of two Southern Hemisphere Sphagnum species (S. australe, S. falcatulum). The pattern of microsatellite alleles indicates that both species are composed of a complex of allodiploid and allotriploid gametophytes, with the latter resulting from two allopolyploidization events. No haploid (n = x) gametophytes were found for either species. The ploidal levels suggested by the pattern of microsatellite alleles were confirmed by flow cytometry and Feulgen DNA image densitometry. For both S. australe and S. falcatulum, the respective allodiploid plants (or their ancestors) are one of the parent species of the allotriploid plants. This is the first report of triploidy in Sphagnum gametophytes occurring in nature and also the first report of the presence of three differentiated genomes in any bryophyte. It is also the first report of intersectional allopolyploidy in Sphagnum, with S. australe appearing to have parental species from Sphagnum sections Rigida and Sphagnum, and S. falcatulum having parental species from Sphagnum sections Cuspidata and Subsecunda. In both species, the allotriploid cytotypes were the most prevalent cytotype on the South Island of New Zealand. The pattern of microsatellite alleles shows the presence of two genetically distinct populations of allodiploid S. australe, possibly indicating multiple origins of polyploidy for that allodiploid cytotype. Morphological evidence is also highly indicative of recurrent polyploidy in the allotriploid cytotype of S. falcatulum. Allopolyploidy has clearly played a major evolutionary role in these two Southern Hemisphere taxa. This study, in conjunction with other recent research, indicates that allopolyploidy is a common, if not the predominant, form of polyploidy in Sphagnum.


New Phytologist | 2010

Macroecological patterns of genetic structure and diversity in the aquatic moss Platyhypnidium riparioides

Virginie Hutsemekers; Olivier J. Hardy; Patrick Mardulyn; A. J. Shaw; Alain Vanderpoorten

Genetic diversity and structure are described in the aquatic moss Platyhypnidium riparioides to assess its dispersal ability at a regional scale and to determine whether patterns of genetic differentiation correlate with environmental variation. Variation at six nuclear microsatellite loci from 50 populations in southern Belgium was investigated through Mantel tests, partial Mantel tests and spatial analysis of molecular variance. Overall patterns of genotypic variation showed strong differentiation among populations at a regional scale (F(ST) = 0.57). The high values of F(IS) observed within populations at both the ramet and genet levels, and the higher proportion of ramets with the same genotype than expected by chance, all point to a strongly clonal or selfing mating system. A genetic discontinuity was identified between northern and southern groups of populations. Within each group, F(ST) and geographical distances were significantly correlated. Partial Mantel tests suggest that genetic and ecological distances are significantly correlated in the southern group. The results point to strong dispersal limitation at the landscape scale and suggest that the southern and northern groups experienced different histories. Within the former, the correlation between genetic and ecological variation is suggestive of reproductive isolation among ecotypes.


Plant Systematics and Evolution | 2003

A taxonomic reassessment of the Vittiaceae (Hypnales, Bryopsida): evidence from phylogenetic analyses of combined chloroplast and nuclear sequence data

Alain Vanderpoorten; Bernard Goffinet; Lars Hedenäs; Cymon J. Cox; A. J. Shaw

The Vittiaceae are a small family of aquatic mosses that are defined based on gametophytic traits whose interpretation has led to conflicting taxonomic arrangements. Phylogenetic analyses of two cpDNA regions, trnL-trnF and atpB-rbcL, indicate that Vittia is nested within the Amblystegiaceae s. str., suggesting that the family Vittiaceae should not be recognized. Platylomella lescurii appears nested within the Thuidiaceae/Leskeaceae. This suggests that the series of character states shared by Vittia and Platylomella, including a differentiated leaf border, short laminal cells, stiff stems, and a thick costa, are convergent features that arose independently in unrelated lineages of aquatic Hypnales. Within the Amblystegiaceae, phylogenetic analyses of the two cpDNA regions combined with ITS sequence data show that Hypnobartlettia, Vittia elimbata spec. nov., V. pachyloma, and V. salina, despite their strong morphological similarity to aquatic Amblystegium species, form a clade that is sister to the Drepanocladus/Pseudo-calliergon complex. This combined clade is unresolved at a polytomy that includes Amblystegium serpens and a clade including all the other Amblystegium species. The occurrence of A. serpens outside the strongly supported clade including other Amblystegium species suggests that A. serpens may be better accommodated in a distinct genus. Amblystegium serpens is the type species of Amblystegium and thus retains the name. The other species are accommodated in their own genus, Hygroamblystegium, including H. fluviatile, H. humile comb. nov., H. noterophyllum, H. tenax, and H. varium.


Molecular Phylogenetics and Evolution | 2008

Genetic structure and genealogy in the Sphagnum subsecundum complex (Sphagnaceae: Bryophyta)

A. J. Shaw; L. Pokorny; Blanka Shaw; M. Ricca; Sandra B. Boles; Péter Szövényi

Allopolyploidy is probably the most extensively studied mode of plant speciation and allopolyploid species appear to be common in the mosses (Bryophyta). The Sphagnum subsecundum complex includes species known to be gametophytically haploid or diploid, and it has been proposed that the diploids (i.e., with tetraploid sporophytes) are allopolyploids. Nucleotide sequence and microsatellite variation among haploids and diploids from Newfoundland and Scandinavia indicate that (1) the diploids exhibit fixed or nearly fixed heterozygosity at the majority of loci sampled, and are clearly allopolyploids, (2) diploids originated independently in North America and Europe, (3) the European diploids appear to have the haploid species, S. subsecundum, as the maternal parent based on shared chloroplast DNA haplotypes, (4) the North American diploids do not have the chloroplast DNA of any sampled haploid, (5) both North American and European diploids share nucleotide and microsatellite similarities with S. subsecundum, (6) the diploids harbor more nucleotide and microsatellite diversity than the haploids, and (7) diploids exhibit higher levels of linkage disequilibrium among microsatellite loci. An experiment demonstrates significant artifactual recombination between interspecific DNAs coamplified by PCR, which may be a complicating factor in the interpretation of sequence-based analyses of allopolyploids.

Collaboration


Dive into the A. J. Shaw's collaboration.

Top Co-Authors

Avatar

Cymon J. Cox

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Hedenäs

Swedish Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge