Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Devos is active.

Publication


Featured researches published by Nicolas Devos.


American Journal of Botany | 2008

ORIGIN AND EVOLUTION OF THE NORTHERN HEMISPHERE DISJUNCTION IN THE MOSS GENUS HOMALOTHECIUM (BRACHYTHECIACEAE)

Sanna Huttunen; Lars Hedenäs; Michael S. Ignatov; Nicolas Devos; Alain Vanderpoorten

Competing hypotheses that rely either on a stepping-stone dispersal via the North Atlantic or the Bering land bridges, or more recent transoceanic dispersal, have been proposed to explain the disjunct distribution of Mediterranean flora in southern Europe and western North America. These hypotheses were tested with molecular dating using a phylogeny of the moss genus Homalothecium based on ITS, atpB-rbcL, and rpl16 sequence data. The monophyly of two main lineages in Western Palearctic (Europe, central Asia and north Africa) and North America is consistent with the ancient vicariance hypothesis. The monophyly of Madeiran H. sericeum accessions supports the recognition of the Macaronesian endemic H. mandonii. A range of absolute rates of molecular evolution documented in land plants was used as probabilistic calibration prior by a Bayesian inference implementing a relaxed-clock model to derive ages for the nodes of interest. Our age estimates for the divergence of the American and Western Palearctic Homalothecium clade (5.7 Ma, IC 3.52-8.26) and the origin of H. mandonii (2.52 Myr IC 0.86-8.25) are not compatible with the ancient vicariance hypothesis. Age estimates suggests that species distributions result from rare instances of dispersal and subsequent sympatric diversification. The calibrated phylogeny indicates that Homalothecium has undergone a fast radiation during the last 4 Myr, which is consistent with the low levels of morphological divergence among sibling species.


Molecular Phylogenetics and Evolution | 2010

Peatmoss (Sphagnum) diversification associated with Miocene Northern Hemisphere climatic cooling

A. J. Shaw; Nicolas Devos; Cymon J. Cox; Sandra B. Boles; Blanka Shaw; A. M. Buchanan; L. Cave; R. Seppelt

Global climate changes sometimes spark biological radiations that can feed back to effect significant ecological impacts. Northern Hemisphere peatlands dominated by living and dead peatmosses (Sphagnum) harbor almost 30% of the global soil carbon pool and have functioned as a net carbon sink throughout the Holocene, and probably since the late Tertiary. Before that time, northern latitudes were dominated by tropical and temperate plant groups and ecosystems. Phylogenetic analyses of mosses (phylum Bryophyta) based on nucleotide sequences from the plastid, mitochondrial, and nuclear genomes indicate that most species of Sphagnum are of recent origin (ca. <20 Ma). Sphagnum species are not only well-adapted to boreal peatlands, they create the conditions that promote development of peatlands. The recent radiation that gave rise to extant diversity of peatmosses is temporally associated with Miocene climatic cooling in the Northern Hemisphere. The evolution of Sphagnum has had profound influences on global biogeochemistry because of the unique biochemical, physiological, and morphological features of these plants, both while alive and after death.


Evolution | 2009

RANGE DISJUNCTIONS, SPECIATION, AND MORPHOLOGICAL TRANSFORMATION RATES IN THE LIVERWORT GENUS LEPTOSCYPHUS

Nicolas Devos; Alain Vanderpoorten

Bryophytes and angiosperms exhibit similar intercontinental disjunct distributions that have traditionally been explained by continental drift. Such disjunct distributions are, however, typically observed at the species level in bryophytes, whereas they occur at much higher taxonomic level in angiosperms. The corollary of this observation is that morphological evolution in bryophytes is exceedingly slow. These hypotheses can now be explicitly tested with the advent of molecular dating. In this article, we show that the trans-Atlantic disjunctions observed in the mostly tropical liverwort genus Leptoscyphus date back to 5.5 Myr, thus largely postdating the opening of the South Atlantic. The temporal calibration of the phylogeny allows us to estimate for the first time the absolute timing of morphological evolution in bryophytes. The time frame necessary for shifts to occur between character states was estimated on average at ca. 4.05 ± 1.86 Myr. As opposed to the traditional view that bryophyte evolution has been triggered by episodic shifts in habitat conditions, our analyses furthermore suggest that morphological and molecular divergence gradually accumulated in the genus, which contrasts with the rapid diversification documented in some tropical trees.


American Journal of Botany | 2010

Newly resolved relationships in an early land plant lineage: Bryophyta class Sphagnopsida (peat mosses)

A. J. Shaw; Cymon J. Cox; William R. Buck; Nicolas Devos; A. M. Buchanan; L. Cave; R. Seppelt; Blanka Shaw; Juan Larraín; Richard E. Andrus; Johann Greilhuber; Eva M. Temsch

UNLABELLED PREMISE OF THE STUDY The Sphagnopsida, an early-diverging lineage of mosses (phylum Bryophyta), are morphologically and ecologically unique and have profound impacts on global climate. The Sphagnopsida are currently classified in two genera, Sphagnum (peat mosses) with some 350-500 species and Ambuchanania with one species. An analysis of phylogenetic relationships among species and genera in the Sphagnopsida were conducted to resolve major lineages and relationships among species within the Sphagnopsida. • METHODS Phylogenetic analyses of nucleotide sequences from the nuclear, plastid, and mitochondrial genomes (11 704 nucleotides total) were conducted and analyzed using maximum likelihood and Bayesian inference employing seven different substitution models of varying complexity. • KEY RESULTS Phylogenetic analyses resolved three lineages within the Sphagnopsida: (1) Sphagnum sericeum, (2) S. inretortum plus Ambuchanania leucobryoides, and (3) all remaining species of Sphagnum. Sister group relationships among these three clades could not be resolved, but the phylogenetic results indicate that the highly divergent morphology of A. leucobryoides is derived within the Sphagnopsida rather than plesiomorphic. A new classification is proposed for class Sphagnopsida, with one order (Sphagnales), three families, and four genera. • CONCLUSIONS The Sphagnopsida are an old lineage within the phylum Bryophyta, but the extant species of Sphagnum represent a relatively recent radiation. It is likely that additional species critical to understanding the evolution of peat mosses await discovery, especially in the southern hemisphere.


Biological Reviews | 2009

The ghosts of Gondwana and Laurasia in modern liverwort distributions

Alain Vanderpoorten; S. Robbert Gradstein; Mark A. Carine; Nicolas Devos

Recent advances in phylogenetics and, in particular, molecular dating, indicate that transoceanic dispersal has played an important role in shaping plant and animal distributions, obscuring any effect of tectonic history. Taxonomic sampling in biogeographic studies is, however, systematically biased towards vertebrates and higher plants and the possibility remains that a much stronger signature of ancient vicariance might be evident among other organisms, particularly among basal land plants. Here, an explicit Bayesian model‐based approach was used to investigate global‐scale biogeographic patterns among liverwort genera and to determine whether the patterns identified are consistent with the expectations of vicariance or dispersal scenarios. The distribution of each genus was mapped onto the phylograms describing the floristic affinities among areas in order to define the synapomorphic transitions supporting the observed groupings. The probabilities of change in a branch were calculated by implementing the Markov model of BayesTraits. The consistent ambiguity in ancestral state reconstructions returned by the unconstrained, two‐rate model indicated that the overall signal in the data was weak, leading us to test the performance of competing, explicit models. The analyses resolved clades of geographic areas that are mostly consistent with the kingdoms traditionally identified for plants and animals, but with strikingly lower rates of endemism. The major split observed in the phylograms is into almost entirely Laurasian and Gondwanan clades. Other patterns recovered by the analyses, including Wallaces line and the South Atlantic Disjunction, have also traditionally been interpreted in terms of vicariance. These observations contrast with the idea that, in spore‐dispersed organisms like bryophytes and pteridophytes, dispersal obscures evidence of vicariance. However, some discrepancies between the liverwort trees and expectations from a continental drift scenario were observed, such as the sister‐group relationship of the Australian and New Zealand floras, which is supported by the co‐occurrence of many genera, often endemic to these two areas. Together with an interpretation of the results within a phylogenetic context, our analyses suggest that patterns, which are at first sight consistent with an ancient vicariance hypothesis, may, in fact, conceal a complex mixture of relictual distributions and more recent, asymmetrical dispersal events. Our results provide a framework for testing specific evolutionary hypotheses concerning the extremely low levels of endemism in bryophytes and in particular, the significance of dispersal and cryptic diversification.


New Phytologist | 2011

Evolution of sexual systems, dispersal strategies and habitat selection in the liverwort genus Radula.

Nicolas Devos; Matt A. M. Renner; Robbert Gradstein; A. Jonathan Shaw; Benjamin Laenen; Alain Vanderpoorten

• Shifts in sexual systems are among the most common and important transitions in plants and are correlated with a suite of life-history traits. The evolution of sexual systems and their relationships to gametophyte size, sexual and asexual reproduction, and epiphytism are examined here in the liverwort genus Radula. • The sequence of trait acquisition and the phylogenetic correlations between those traits was investigated using comparative methods. • Shifts in sexual systems recurrently occurred from dioecy to monoecy within facultative epiphyte lineages. Production of specialized asexual gemmae was correlated to neither dioecy nor strict epiphytism. • The significant correlations among life-history traits related to sexual systems and habitat conditions suggest the existence of evolutionary trade-offs. Obligate epiphytes do not produce gemmae more frequently than facultative epiphytes and disperse by whole gametophyte fragments, presumably to avoid the sensitive protonemal stage in a habitat prone to rapid changes in moisture availability. As dispersal ranges correlate with diaspore size, this reinforces the notion that epiphytes experience strong dispersal limitations. Our results thus provide the evolutionary complement to metapopulation, metacommunity and experimental studies demonstrating trade-offs between dispersal distance, establishment ability, and life-history strategy, which may be central to the evolution of reproductive strategies in bryophytes.


Systematic Biology | 2015

Approximate Bayesian Computation Reveals the Crucial Role of Oceanic Islands for the Assembly of Continental Biodiversity.

Jairo Patiño; Mark A. Carine; Patrick Mardulyn; Nicolas Devos; Rubén G. Mateo; Juana M. González-Mancebo; A. Jonathan Shaw; Alain Vanderpoorten

The perceived low levels of genetic diversity, poor interspecific competitive and defensive ability, and loss of dispersal capacities of insular lineages have driven the view that oceanic islands are evolutionary dead ends. Focusing on the Atlantic bryophyte flora distributed across the archipelagos of the Azores, Madeira, the Canary Islands, Western Europe, and northwestern Africa, we used an integrative approach with species distribution modeling and population genetic analyses based on approximate Bayesian computation to determine whether this view applies to organisms with inherent high dispersal capacities. Genetic diversity was found to be higher in island than in continental populations, contributing to mounting evidence that, contrary to theoretical expectations, island populations are not necessarily genetically depauperate. Patterns of genetic variation among island and continental populations consistently fitted those simulated under a scenario of de novo foundation of continental populations from insular ancestors better than those expected if islands would represent a sink or a refugium of continental biodiversity. We, suggest that the northeastern Atlantic archipelagos have played a key role as a stepping stone for transoceanic migrants. Our results challenge the traditional notion that oceanic islands are the end of the colonization road and illustrate the significant role of oceanic islands as reservoirs of novel biodiversity for the assembly of continental floras.


Evolution | 2009

And if Engler was Not Completely Wrong? Evidence for Multiple Evolutionary Origins in the Moss Flora of Macaronesia

Delphine A. Aigoin; Nicolas Devos; Sanna Huttunen; Michael S. Ignatov; Juana M. González-Mancebo; Alain Vanderpoorten

The Macaronesian endemic flora has traditionally been interpreted as a relict of a subtropical element that spanned across Europe in the Tertiary. This hypothesis is revisited in the moss subfamily Helicodontioideae based on molecular divergence estimates derived from two independent calibration techniques either employing fossil evidence or using an Monte Carlo Markov Chain (MCMC) to sample absolute rates of nucleotide substitution from a prior distribution encompassing a wide range of rates documented across land plants. Both analyses suggest that the monotypic Madeiran endemic genus Hedenasiastrum diverged of other Helicodontioideae about 40 million years, that is, well before Macaronesian archipelagos actually emerged, in agreement with the relict hypothesis. Hedenasiastrum is characterized by a plesiomorphic morphology, which is suggestive of a complete morphological stasis over 40 million years. Macaronesian endemic Rhynchostegiella species, whose polyphyletic origin involves multiple colonization events, evolved much more recently, and yet accumulated many more morphological novelties than H. percurrens. The Macaronesian moss flora thus appears as a complex mix of ancient relicts and more recently dispersed, fast-evolving taxa.


PhytoKeys | 2013

Integrative taxonomy resolves the cryptic and pseudo-cryptic Radula buccinifera complex (Porellales, Jungermanniopsida), including two reinstated and five new species

Matt A. M. Renner; Nicolas Devos; Jairo Patiño; Elizabeth A. Brown; Andrew Orme; Michael Elgy; Trevor C Wilson; Lindsey J. Gray; Matt Von Konrat

Abstract Molecular data from three chloroplast markers resolve individuals attributable to Radula buccinifera in six lineages belonging to two subgenera, indicating the species is polyphyletic as currently circumscribed. All lineages are morphologically diagnosable, but one pair exhibits such morphological overlap that they can be considered cryptic. Molecular and morphological data justify the re-instatement of a broadly circumscribed ecologically variable R. strangulata, of R. mittenii, and the description of five new species. Two species Radula mittenii Steph. and R. notabilis sp. nov. are endemic to the Wet Tropics Bioregion of north-east Queensland, suggesting high diversity and high endemism might characterise the bryoflora of this relatively isolated wet-tropical region. Radula demissa sp. nov. is endemic to southern temperate Australasia, and like R. strangulata occurs on both sides of the Tasman Sea. Radula imposita sp. nov. is a twig and leaf epiphyte found in association with waterways in New South Wales and Queensland. Another species, R. pugioniformis sp. nov., has been confused with Radula buccinifera but was not included in the molecular phylogeny. Morphological data suggest it may belong to subg. Odontoradula. Radula buccinifera is endemic to Australia including Western Australia and Tasmania, and to date is known from south of the Clarence River on the north coast of New South Wales. Nested within R. buccinifera is a morphologically distinct plant from Norfolk Island described as R. anisotoma sp. nov. Radula australiana is resolved as monophyletic, sister to a species occurring in east coast Australian rainforests, and nesting among the R. buccinifera lineages with strong support. The molecular phylogeny suggests several long-distance dispersal events may have occurred. These include two east-west dispersal events from New Zealand to Tasmania and south-east Australia in R. strangulata, one east-west dispersal event from Tasmania to Western Australia in R. buccinifera, and at least one west-east dispersal from Australia to New Zealand in R. australiana. Another west-east dispersal event from Australia to Norfolk Island may have led to the budding speciation of R. anisotoma. In contrast, Radula demissa is phylogeographically subdivided into strongly supported clades either side of the Tasman Sea, suggesting long distance dispersal is infrequent in this species.


Genome Biology and Evolution | 2014

Efficient purging of deleterious mutations in plants with haploid selfing

Péter Szövényi; Nicolas Devos; David J. Weston; Xiaohan Yang; Zsófia Hock; Jonathan Shaw; Kentaro K. Shimizu; Stuart F. McDaniel; Andreas Wagner

In diploid organisms, selfing reduces the efficiency of selection in removing deleterious mutations from a population. This need not be the case for all organisms. Some plants, for example, undergo an extreme form of selfing known as intragametophytic selfing, which immediately exposes all recessive deleterious mutations in a parental genome to selective purging. Here, we ask how effectively deleterious mutations are removed from such plants. Specifically, we study the extent to which deleterious mutations accumulate in a predominantly selfing and a predominantly outcrossing pair of moss species, using genome-wide transcriptome data. We find that the selfing species purge significantly more nonsynonymous mutations, as well as a greater proportion of radical amino acid changes which alter physicochemical properties of amino acids. Moreover, their purging of deleterious mutation is especially strong in conserved regions of protein-coding genes. Our observations show that selfing need not impede but can even accelerate the removal of deleterious mutations, and do so on a genome-wide scale.

Collaboration


Dive into the Nicolas Devos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matt Von Konrat

Field Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Weston

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge