Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. J. Shields is active.

Publication


Featured researches published by A. J. Shields.


Nature Photonics | 2007

Semiconductor quantum light sources

A. J. Shields

Lasers and LEDs have a statistical distribution in the number of photons emitted within a given time interval. Applications exploiting the quantum properties of light require sources for which either individual photons, or pairs, are generated in a regulated stream. Here we review recent research on single-photon sources based on the emission of a single semiconductor quantum dot. In just a few years remarkable progress has been made in generating indistinguishable single photons and entangled-photon pairs using such structures. This suggests that it may be possible to realize compact, robust, LED-like semiconductor devices for quantum light generation.


Nature | 2006

A semiconductor source of triggered entangled photon pairs

R. M. Stevenson; Robert James Young; P. Atkinson; K. Cooper; D. A. Ritchie; A. J. Shields

Entangled photon pairs are an important resource in quantum optics, and are essential for quantum information applications such as quantum key distribution and controlled quantum logic operations. The radiative decay of biexcitons—that is, states consisting of two bound electron–hole pairs—in a quantum dot has been proposed as a source of triggered polarization-entangled photon pairs. To date, however, experiments have indicated that a splitting of the intermediate exciton energy yields only classically correlated emission. Here we demonstrate triggered photon pair emission from single quantum dots suggestive of polarization entanglement. We achieve this by tuning the splitting to zero, through either application of an in-plane magnetic field or careful control of growth conditions. Entangled photon pairs generated ‘on demand’ have significant fundamental advantages over other schemes, which can suffer from multiple pair emission, or require post-selection techniques or the use of photon-number discriminating detectors. Furthermore, control over the pair generation time is essential for scaling many quantum information schemes beyond a few gates. Our results suggest that a triggered entangled photon pair source could be implemented by a simple semiconductor light-emitting diode.


Applied Physics Letters | 2004

Quantum key distribution over 122 km of standard telecom fiber

C. Gobby; Zhiliang Yuan; A. J. Shields

We report a demonstration of quantum key distribution over a standard telecom fiber exceeding 100 km in length. Through careful optimization of the interferometer and single photon detector, we achieve a quantum bit error ratio of 8.9% for a 122 km link, allowing a secure shared key to be formed after error correction and privacy amplification. Key formation rates of up to 1.9 kbit/s are achieved depending upon fiber length. We discuss the factors limiting the maximum fiber length in quantum cryptography.


Optics Express | 2011

Field test of quantum key distribution in the Tokyo QKD Network

Masahide Sasaki; Mikio Fujiwara; H. Ishizuka; W. Klaus; K. Wakui; M. Takeoka; Shigehito Miki; Taro Yamashita; Zhen Wang; Akihiro Tanaka; Ken-ichiro Yoshino; Yoshihiro Nambu; Shigeki Takahashi; Akio Tajima; Akihisa Tomita; T. Domeki; Toshio Hasegawa; Y. Sakai; H. Kobayashi; T. Asai; Kaoru Shimizu; T. Tokura; Toyohiro Tsurumaru; Mitsuru Matsui; Toshimori Honjo; Kiyoshi Tamaki; Hiroki Takesue; Yasuhiro Tokura; James F. Dynes; A. R. Dixon

A secure communication network with quantum key distribution in a metropolitan area is reported. Six different QKD systems are integrated into a mesh-type network. GHz-clocked QKD links enable us to demonstrate the world-first secure TV conferencing over a distance of 45km. The network includes a commercial QKD product for long-term stable operation, and application interface to secure mobile phones. Detection of an eavesdropper, rerouting into a secure path, and key relay via trusted nodes are demonstrated in this network.


Applied Physics Letters | 2007

High speed single photon detection in the near infrared

Zhiliang Yuan; Beata Kardynal; A. W. Sharpe; A. J. Shields

InGaAs avalanche photodiodes (APDs) are convenient for single photon detection in the near-infrared (NIR) including the fibre communication bands (1.31/1.55


Nature | 2010

An entangled-light-emitting diode

C. L. Salter; R. M. Stevenson; I. Farrer; C. A. Nicoll; D. A. Ritchie; A. J. Shields

\mu


Optics Express | 2008

Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate

A. R. Dixon; Zhiliang Yuan; James F. Dynes; A. W. Sharpe; A. J. Shields

m). However, to suppress afterpulse noise due to trapped avalanche charge, they must be gated with MHz repetition frequencies, thereby severely limiting the count rate in NIR applications. Here we show gating frequencies for InGaAs-APDs well beyond 1 GHz. Using a self-differencing technique to sense much weaker avalanches, we reduce drastically afterpulse noise. At 1.25 GHz, we obtain a detection efficiency of 10.8% with an afterpulse probability of 6.16%. In addition, the detector features low jitter (55 ps) and a count rate of 100 MHz.


Nature Photonics | 2010

Two-photon interference of the emission from electrically tunable remote quantum dots

Raj B. Patel; A. J. Bennett; I. Farrer; C. A. Nicoll; D. A. Ritchie; A. J. Shields

An optical quantum computer, powerful enough to solve problems so far intractable using conventional digital logic, requires a large number of entangled photons. At present, entangled-light sources are optically driven with lasers, which are impractical for quantum computing owing to the bulk and complexity of the optics required for large-scale applications. Parametric down-conversion is the most widely used source of entangled light, and has been used to implement non-destructive quantum logic gates. However, these sources are Poissonian and probabilistically emit zero or multiple entangled photon pairs in most cycles, fundamentally limiting the success probability of quantum computational operations. These complications can be overcome by using an electrically driven on-demand source of entangled photon pairs, but so far such a source has not been produced. Here we report the realization of an electrically driven source of entangled photon pairs, consisting of a quantum dot embedded in a semiconductor light-emitting diode (LED) structure. We show that the device emits entangled photon pairs under d.c. and a.c. injection, the latter achieving an entanglement fidelity of up to 0.82. Entangled light with such high fidelity is sufficient for application in quantum relays, in core components of quantum computing such as teleportation, and in entanglement swapping. The a.c. operation of the entangled-light-emitting diode (ELED) indicates its potential function as an on-demand source without the need for a complicated laser driving system; consequently, the ELED is at present the best source on which to base future scalable quantum information applications.


European Physical Journal D | 2010

Quantum memories : a review based on the European integrated project "Qubit Applications (QAP)"

Christoph Simon; Mikael Afzelius; J. Appel; A. Boyer de la Giroday; S. J. Dewhurst; Nicolas Gisin; C. Y. Hu; F. Jelezko; Stefan Kröll; J. H. Müller; J. Nunn; E. S. Polzik; John Rarity; H. de Riedmatten; Wenjamin Rosenfeld; A. J. Shields; Niklas Sköld; R. M. Stevenson; Rob Thew; Ian A. Walmsley; M. C. Weber; Harald Weinfurter; Jörg Wrachtrup; Robert James Young

We report the first gigahertz clocked decoy-protocol quantum key distribution (QKD). Record key rates have been achieved thanks to the use of self-differencing InGaAs avalanche photodiodes designed specifically for high speed single photon detection. The system is characterized with a secure key rate of 1.02 Mbit/s for a fiber distance of 20 km and 10.1 kbit/s for 100 km. As the present advance relies upon compact non-cryogenic detectors, it opens the door towards practical and low cost QKD systems to secure broadband communication in future.


Applied Physics Letters | 2010

Continuous operation of high bit rate quantum key distribution

A. R. Dixon; Zhiliang Yuan; James F. Dynes; A. W. Sharpe; A. J. Shields

Single semiconductor quantum dots have been widely studied within devices that can apply an electric field. In the most common system, the low energy offset between the InGaAs quantum dot and the surrounding GaAs material limits the magnitude of field that can be applied to tens of kVcm−1, before carriers tunnel out of the dot. The Stark shift experienced by the emission line is typically ∼ 1 meV. We report that by embedding the quantum dots in a quantum well heterostructure the vertical field that can be applied is increased by over an order of magnitude whilst preserving the narrow linewidths, high internal quantum efficiencies and familiar emission spectra. Individual dots can then be continuously tuned to the same energy allowing for two-photon interference between remote, independent, quantum dots. PACS numbers: 78.67.-n, 85.35.Ds ∗Electronic address: [email protected]

Collaboration


Dive into the A. J. Shields's collaboration.

Top Co-Authors

Avatar

I. Farrer

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Atkinson

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge