A. J. Young
Utah State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. J. Young.
Journal of Dairy Science | 2011
C.M. Dschaak; C.M. Williams; M.S. Holt; J.-S. Eun; A. J. Young; B.R. Min
A lactation experiment was conducted to determine the influence of quebracho condensed tannin extract (CTE) on ruminal fermentation and lactational performance of dairy cows. The cows were fed a high forage (HF) or a low forage (LF) diet with a forage-to-concentrate ratio of 59:41 or 41:59 on a dry matter (DM) basis, respectively. Eight multiparous lactating Holstein cows (62 ± 8.8 d in milk) were used. The design of the experiment was a double 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments, and each period lasted 21 d (14 d of treatment adaptation and 7 d of data collection and sampling). Four dietary treatments were tested: HF without CTE, HF with CTE (HF+CTE), LF without CTE, and LF with CTE (LF+CTE). Commercial quebracho CTE was added to the HF+CTE and the LF+CTE at a rate of 3% of dietary DM. Intake of DM averaged 26.7 kg/d across treatments, and supplementing CTE decreased intakes of DM and nutrients regardless of forage level. Digestibilities of DM and nutrients were not affected by CTE supplementation. Milk yield averaged 35.3 kg/d across treatments, and yields of milk and milk component were not influenced by CTE supplementation. Negative effects of CTE supplementation on feed intake resulted in increased feed efficiency (milk yield/DM intake). Although concentration of milk urea N (MUN) decreased by supplementing CTE in the diets, efficiency of N use for milk N was not affected by CTE supplementation. Feeding the LF diet decreased ruminal pH (mean of 6.47 and 6.33 in HF and LF, respectively). However, supplementation of CTE in the diets did not influence ruminal pH. Supplementing CTE decreased total volatile fatty acid concentration regardless of level of forage. With CTE supplementation, molar proportions of acetate, propionate, and butyrate increased in the HF diet, but not in the LF diet, resulting in interactions between forage level and CTE supplementation. Concentration of ammonia-N tended to decrease with supplementation of CTE. The most remarkable finding in this study was that cows fed CTE-supplemented diets had decreased ruminal ammonia-N and MUN concentrations, indicating that less ruminal N was lost as ammonia because of decreased degradation of crude protein by rumen microorganisms in response to CTE supplementation. Therefore, supplementation of CTE in lactation dairy diets may change the route of N excretion, having less excretion into urine but more into feces, as it had no effect on N utilization efficiency for milk production.
Journal of Dairy Science | 2010
M.S. Holt; C.M. Williams; C.M. Dschaak; J.-S. Eun; A. J. Young
This experiment was conducted to determine the effects of corn silage hybrids and nonforage fiber sources (NFFS) in high forage diets formulated with high dietary proportions of alfalfa hay (AH) and corn silage (CS) on ruminal fermentation and productive performance by early lactating dairy cows. Eight multiparous Holstein cows (4 ruminally fistulated) averaging 36±6.2 d in milk were used in a duplicated 4 × 4 Latin square design experiment with a 2 × 2 factorial arrangement of treatments. Cows were fed 1 of 4 dietary treatments during each of the four 21-d replicates. Treatments were (1) conventional CS (CCS)-based diet without NFFS, (2) CCS-based diet with NFFS, (3) brown midrib CS (BMRCS)-based diet without NFFS, and (4) BMRCS-based diet with NFFS. Diets were isonitrogenous and isocaloric. Sources of NFFS consisted of ground soyhulls and pelleted beet pulp to replace a portion of AH and CS in the diets. In vitro 30-h neutral detergent fiber (NDF) degradability was greater for BMRCS than for CCS (42.3 vs. 31.2%). Neither CS hybrids nor NFFS affected intake of dry matter (DM) and nutrients. Digestibility of N, NDF, and acid detergent fiber tended to be greater for cows consuming CCS-based diets. Milk yield was not influenced by CS hybrids and NFFS. However, a tendency for an interaction between CS hybrids and NFFS occurred, with increased milk yield due to feeding NFFS with the BMRCS-based diet. Yields of milk fat and 3.5% fat-corrected milk decreased when feeding the BMRCS-based diet, and a tendency existed for an interaction between CS hybrids and NFFS because milk fat concentration further decreased by feeding NFFS with BMRCS-based diet. Although feed efficiency (milk/DM intake) was not affected by CS hybrids and NFFS, an interaction was found between CS hybrids and NFFS because feed efficiency increased when NFFS was fed only with BMRCS-based diet. Total volatile fatty acid production and individual molar proportions were not affected by diets. Dietary treatments did not influence ruminal pH profiles, except that duration (h/d) of pH <5.8 decreased when NFFS was fed in a CCS-based diet but not in a BMRCS-based diet, causing a tendency for an interaction between CS hybrids and NFFS. Overall measurements in our study reveal that high forage NDF concentration (20% DM on average) may eliminate potentially positive effects of BMRCS. In the high forage diets, NFFS exerted limited effects on productive performance when they replaced AH and CS. Although the high quality AH provided adequate NDF (38.3% DM) for optimal rumen fermentative function, the low NDF concentration of the AH and the overall forage particle size reduced physically effective fiber and milk fat concentration.
Journal of Dairy Science | 2013
M.S. Holt; J.-S. Eun; C. R. Thacker; A. J. Young; Xin Dai; K.E. Nestor
This experiment was conducted to test a hypothesis that lactating dairy cows fed 35% brown midrib (BMR) corn silage and 25% alfalfa hay (dry matter (DM) basis) would consume more DM around peak lactation compared with those fed conventional corn silage (CS), resulting in longer peak milk production. Twenty-eight multiparous Holstein cows were used starting at the onset of lactation through 180 d in milk (DIM). Treatments were formulated to maintain a forage-to-concentrate ratio of 60:40, differing only in the CS hybrids used. Two dietary treatments were assessed in a completely randomized design: total mixed ration based on conventional CS (CCS) and total mixed ration based on BMR silage. Through peak lactation (1-60 DIM), DM intake was not different between dietary treatments, whereas DM intake post-peak lactation (61-180 DIM) tended to increase by feeding the BMR diet compared with the CCS diet (25.8 vs. 24.7 kg/d). Cows fed the BMR diet tended to lose less body weight through peak lactation compared with those fed the CCS diet (-0.22 vs. -0.52 kg/d). Although milk yield was not different between dietary treatments through peak lactation, milk yield post-peak lactation increased by feeding the BMR diet compared with the CCS diet (41.0 vs. 38.8 kg/d). Yield of 3.5% fat-corrected milk was similar between dietary treatments throughout the experiment (41.4 kg/d, on average), but milk fat concentration decreased by feeding the BMR diet compared with the CCS diet post-peak lactation (3.47 vs. 3.80%). Overall milk protein concentration was similar between dietary treatments throughout the experiment (2.96%, on average), whereas milk protein yield tended to be higher for the BMR diet post-peak lactation compared with the CCS diet (1.19 vs.1.13 kg/d). Feeding BMR silage with a high dietary concentration of alfalfa hay maintained more body weight, but did not affect milk production through peak lactation; however, cows fed the BMR diet post-peak lactation consumed more feed and maintained longer peak milk yield, leading to greater overall milk production and milk protein yield.
Journal of Dairy Science | 2013
M.S. Holt; K. Neal; J.-S. Eun; A. J. Young; Jeffery O. Hall; K.E. Nestor
This experiment was conducted to determine the effects of corn silage (CS) hybrids and quality of alfalfa hay (AH) in high-forage dairy diets on N utilization, ruminal fermentation, and lactational performance by early-lactating dairy cows. Eight multiparous Holstein cows were used in a duplicated 4 × 4 Latin square experiment with a 2 × 2 factorial arrangement of dietary treatments. The 8 cows (average days in milk = 23 ± 11.2) were surgically fitted with ruminal cannula, and the 2 squares were conducted simultaneously. Within square, cows were randomly assigned to a sequence of 4 diets: conventional CS (CCS) or brown midrib CS (BMR) was combined with fair-quality AH [FAH: 46.7% neutral detergent fiber (NDF) and 18.4% crude protein (CP)] or high-quality AH (HAH: 39.2% NDF and 20.7% CP) to form 4 treatments: CCS with FAH, CCS with HAH, BMR with FAH, and BMR with HAH. Diets were isonitrogenous across treatments, averaging 15.9% CP. Each period lasted a total of 21 d, with 14 d for treatment adaptation and 7d for data collection and sampling. Intake of DM and milk yield did not differ in response to CS hybrids or AH quality. Although feeding BMR-based diets decreased urinary N output by 24%, it did not affect fecal N output. Feeding HAH decreased urinary N output by 15% but increased fecal N output by 20%. Nitrogen efficiency [milk N (g/d)/intake N (g/d)] tended to increase for BMR treatments. Ruminal ammonia-N concentration was lower for cows fed BMR-based diets than for those fed CCS-based diets but was not affected by quality of AH. Feeding BMR-based diets or HAH decreased milk urea N concentration by 23 or 15%, respectively, compared with CCS-based diets or FAH. Total volatile fatty acid concentration increased with HAH but was not influenced by CS hybrids. Feeding BMR-based diets decreased urinary N-to-fecal N ratio (UN:FN), and it was further reduced by feeding HAH. Although cows fed the BMR-based diets tended to increase milk N-to-manure N ratio, the quality of AH did not affect the ratio. The lower ratio of UN:FN with a higher ratio of milk N-to-manure N ratio for the BMR-based diets indicates that feeding BMR may reduce manure ammonia-N by reducing excretion of urinary N and increasing secretion of milk N per unit of manure N excreted.
Journal of Dairy Science | 2012
F. Fatehi; A. Zali; M. Honarvar; M. Dehghan-Banadaky; A. J. Young; M. Ghiasvand; M. Eftekhari
The objectives of this study were to determine the relationships between milk urea N and days in milk, parity, and season in Iranian Holstein cows. Twelve Iranian commercial dairy herds participated in a 13-mo study from December 1, 2008, to December 31, 2009. All cows were milked 3 times daily, housed in freestalls, and fed a total mixed ration twice a day. Mean milk urea N over the study period was 16.0mg/dL. Mean milk urea N, categorized by 30-d increments of days in milk, paralleled changes in milk values and followed a curvilinear shape. However, milk urea N concentration reached a maximum at the fifth month of days in milk, but milk production reached a maximum at the third month. The concentration of milk urea N was lower during the first 30 d in milk category compared with all other days in milk categories. Overall mean milk urea N concentration of Holstein cows in the third and greater lactations was lower than in the first or second lactation. Milk urea N was at its lowest level in December (13 mg/dL), increased in the spring and summer months, and reached a maximum in July (18.8 mg/dL). From that point, milk urea N concentration progressively diminished to the autumn-winter level. In this study, milk urea N concentration was positively correlated with monthly temperature mean and may be a reason for the lower reproductive performance during the summer months. It has been recommended that milk urea N concentration should be evaluated in association with parity, days in milk, and season (or month). These variables should be considered potential sources of misinterpretation when exploring the relationship between milk urea N and nutritional management or measures of performance.
Journal of Dairy Science | 2014
K. Neal; J.-S. Eun; A. J. Young; K. Mjoun; Jeffery O. Hall
Due to the increasing cost of soybean meal and concerns of excess N being excreted into the environment, new protein supplements have been developed. Two products that have shown potential in increasing N utilization efficiency are slow-release urea (SRU; Optigen; Alltech Inc., Nicholasville, KY) and ruminal-escape protein derived from yeast (YMP; DEMP; Alltech Inc.). The objective of this study was to assess the effects of feeding these 2 supplements in alfalfa hay-based [45.7% of forage dietary dry matter (DM)] dairy diets on nutrient utilization, feed efficiency, and lactational performance of dairy cows. Twelve multiparous dairy cows were used in a triple 4 × 4 Latin square design with one square consisting of ruminally cannulated cows. Treatments included (1) control, (2) SRU-supplemented total mixed ration (SRUT), (3) YMP-supplemented total mixed ration (YMPT), and (4) SRU- and YMP-supplemented total mixed ration (SYT). The control consisted only of a mixture of soybean meal and canola meal in a 50:50 ratio. The SRU and the YMP were supplemented at 0.49 and 1.15% DM, respectively. The experiment consisted of 4 periods lasting 28 d each (21 d of adaptation and 7 d of sampling). Cows fed YMPT and SYT had decreased intake of DM, and all supplemented treatments had lower crude protein intake compared with those fed the control. Milk yield tended to have the greatest increase in YMPT compared with the control (41.1 vs. 39.7 kg/d) as well as a tendency for increased milk fat and protein yields. Feed efficiencies based on yields of milk, 3.5% fat-corrected milk, and energy-corrected milk increased at 10 to 16% due to protein supplementation. Cows fed protein supplements partitioned less energy toward body weight gain, but tended to partition more energy toward milk production. Efficiency of use of feed N to milk N increased by feeding SRUT and YMPT, and milk N-to-manure N ratio increased with YMPT. Overall results from this experiment indicate that replacing the mixture of soybean meal and canola meal with SRU and YMP in alfalfa hay-based dairy diets can be a good approach to improve nutrient utilization efficiencies in lactating dairy cows.
Journal of Dairy Science | 2011
C.M. Dschaak; C. T. Noviandi; J.-S. Eun; V. Fellner; A. J. Young; Dale R. ZoBell; Clark Israelsen
A lactation trial was conducted to determine the effects of supplementing whole safflower seeds (SS) on ruminal fermentation, lactational performance, and milk fatty acid (FA) profiles. Nine multiparous Holstein cows (days in milk = 110 ± 20) were used in a replicated 3 × 3 Latin square design. Each period lasted 21 d, with 14 d of adaptation and 7 d of data collection. Within square, cows were randomly assigned to a sequence of 3 dietary treatments as follows: cottonseed total mixed ration (TMR; CST), conventional SS (variety S-208) TMR (CSST), and NutraSaff SS (Safflower Technologies International, Sidney, MT) TMR (NSST). Diets contained approximately 63% forage (36% alfalfa hay, 4% grass hay, and 23% corn silage) and 37% concentrate supplemented with 2% cottonseed to the CST and 3% conventional or NutraSaff SS to the CSST or the NSST, respectively. Intake of dry matter (DM) averaged 21.8 kg/d and did not differ across diets, but feeding the NSST decreased intake of neutral detergent fiber (NDF) due to lower dietary concentration of NDF in the NSST. Digestibilities of DM and nutrients were similar among treatments. No differences in yields of milk or milk components were observed in response to supplementing SS. Dietary treatments did not affect ruminal pH, total or molar proportions of ruminal volatile FA, and ammonia-N. However, cows fed SS had a higher molar proportion of isobutyrate than those fed the CST diet. Ruminal C16:0 FA concentration increased with the CST, whereas C18:1 cis-9 and C18:2 n-6 tended to increase with SS supplementation, indicating that conventional and NutraSaff SS were partially protected from microbial biohydrogenation. Supplementing SS decreased milk C16:0 concentration, whereas it increased C18:1 cis-9 and C18:1 trans-9. Milk FA C18:1 trans-11 and cis-9, trans-11 conjugated linoleic acid increased and tended to increase with feeding the NSST, respectively, but not the CSST diet. In conclusion, supplementing diets with whole SS at 3% of dietary DM can be an effective strategy of fat supplementation to lactating dairy cows without negative effects on lactational performance and milk FA profiles.
The Professional Animal Scientist | 2012
J.M. Vera; A.H. Smith; Dale R. ZoBell; A. J. Young; J.-S. Eun
ABSTRACT A series of experiments was conducted to investigate the effects of adding an exogenous proteolytic enzyme (EPE) on the growth performance of beef steers fed growing and finishing diets containing 30% dried distillers grains with solubles (DDGS; Exp. 1), and results corroborated by in vitro ruminal fermentation in continuous cultures (Exp. 2). In Exp. 1, 48 Angus crossbred steers were randomly allotted to 12 pens (4 animals per pen) and assigned to 2 treatments (6 pens per treatment) in a completely randomized design: DDGS TMR (DT) without and with EPE (27 mg of azocasein hydrolyzed/min/kg DM TMR). The addition of EPE during the growing phase increased DMI (P = 0.02), but had no effects on final BW, BW change, ADG, and G:F. Adding EPE during the growing phase decreased NDF digestibility, whereas the digestibility of DM, CP, and ADF was not affected. There was a tendency for both ADG (P = 0.09) and final BW (P = 0.11) to increase during the finishing phase without affecting BW change and G:F. As opposed to the growing phase, EPE increased digestibility (P
Journal of Dairy Science | 2014
J.-S. Eun; A.W. Kelley; K. Neal; A. J. Young; Jeffery O. Hall
This experiment was performed to test a hypothesis that nutritive benefits of feeding high-moisture corn (HMC) would be different when fed with different qualities of alfalfa hay (AH) due to associative effects on ruminal fermentation and nutrient utilization efficiency. Eight multiparous lactating Holstein cows were used; 4 were surgically fitted with ruminal cannulas. Days in milk averaged 184 ± 10.7 at the start of the experiment. The experiment was performed in a duplicate 4 × 4 Latin square design. Within each square, cows were randomly assigned to a sequence of 4 diets during each of the four 21-d periods (14 d of treatment adaptation and 7 d of data collection and sampling). A 2 × 2 factorial arrangement was used; fair-quality AH [FAH; 39.6% neutral detergent fiber (NDF) and 17.9% crude protein (CP)] or high-quality AH (HAH; 33.6% NDF and 21.9% CP) was combined with steam-flaked corn (SFC) or HMC to form 4 treatments: FAH with SFC, FAH with HMC, HAH with SFC, and HAH with HMC. The AH was fed at 32% dry matter (DM) content, whereas SFC or HMC was included at 17% DM content. Quality of AH did not affect DM intake, whereas feeding HMC decreased DM intake, regardless of quality of AH. Digestibility of DM was greater for cows fed HAH compared with those fed FAH (70.1 vs. 67.6%). Digestibility of NDF increased by feeding HMC (67.6 vs. 58.4%), but not by quality of AH. Under FAH, starch digestibility decreased by feeding HMC compared with SFC (85.7 vs. 95.0%), but it was similar under HAH, resulting in an interaction between quality of AH and type of corn grain (CG). Feeding different qualities of AH did not affect milk yield; however, feeding HMC decreased milk yield in FAH diet, causing an AH × CG interaction. Efficiency of milk yield/DM intake was improved due to feeding HMC, regardless of the quality of the AH. In addition, dietary N utilization for milk N tended to increase by feeding HMC, but it was not influenced by quality of AH. Yield of microbial protein increased by feeding HAH diets compared with FAH diets, whereas feeding the HMC diet increased microbial protein yield under the HAH diet, leading to an interaction between and AH and CG. Overall results in this experiment indicate that feeding HMC in AH-based diets improved feed efficiency as well as N utilization efficiency, regardless of quality of AH.
The Professional Animal Scientist | 2011
C.C. King; C.M. Dschaak; J.-S. Eun; Vivek Fellner; A. J. Young
ABSTRACT A dual-flow, continuous-culture system was used to investigate effects of ruminal temperature and forage-to-concentrate ratio in lactation dairy diets on in vitro fermentation characteristics. The experiment was performed in a 2 × 2 factorial design (n = 4). Diets were formulated to maintain different forage-to-concentrate ratios (60:40 or 40:60, DM basis) in the high-forage (HF) or the low-forage (LF) diet, respectively. Four treatments were tested: HF under normal ruminal temperature (NRT; 39°C), LF under NRT, HF under high ruminal temperature (HRT; 41°C), and LF under HRT. Each independent run lasted 11 d (8 d of treatment adaptation and 3 d of data and sample collection). The temperature of the HRT treatment was chosen to mimic ruminal fermentative environment when cows are under heat stress. The HRT increased (P