A. Jameson
Swinburne University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Jameson.
Science | 2013
David J. Thornton; B. W. Stappers; M. Bailes; Benjamin R. Barsdell; S. D. Bates; N. D. R. Bhat; M. Burgay; S. Burke-Spolaor; D. J. Champion; P. Coster; N. D'Amico; A. Jameson; S. Johnston; M. J. Keith; M. Kramer; Lina Levin; S. Milia; C. Ng; A. Possenti; W. van Straten
Mysterious Radio Bursts It has been uncertain whether single, short, and bright bursts of radio emission that have been observed are celestial or terrestrial in origin. Thornton et al. (p. 53; see the Perspective by Cordes) report the detection of four nonrepeating radio transient events with millisecond duration in data from the 64-meter Parkes radio telescope in Australia. The properties of these radio bursts indicate that they had their origin outside our galaxy, but it is not possible to tell what caused them. Because the intergalactic medium affects the characteristics of the bursts, it will be possible to use them to study its properties. Radio telescope data revealed four short, extragalactic, nonrepeating bursts of radio emission whose source is unknown. [Also see Perspective by Cordes] Searches for transient astrophysical sources often reveal unexpected classes of objects that are useful physical laboratories. In a recent survey for pulsars and fast transients, we have uncovered four millisecond-duration radio transients all more than 40° from the Galactic plane. The bursts’ properties indicate that they are of celestial rather than terrestrial origin. Host galaxy and intergalactic medium models suggest that they have cosmological redshifts of 0.5 to 1 and distances of up to 3 gigaparsecs. No temporally coincident x- or gamma-ray signature was identified in association with the bursts. Characterization of the source population and identification of host galaxies offers an opportunity to determine the baryonic content of the universe.
Monthly Notices of the Royal Astronomical Society | 2010
M. J. Keith; A. Jameson; W. van Straten; M. Bailes; S. Johnston; M. Kramer; Andrea Possenti; S. D. Bates; N. D. R. Bhat; M. Burgay; S. Burke-Spolaor; Nichi DAmico; Lina Levin; Peter L. McMahon; S. Milia; B. W. Stappers
We have embarked on a survey for pulsars and fast transients using the 13-beam multibeam receiver on the Parkes Radio Telescope. Installation of a digital backend allows us to record 400 MHz of bandwidth for each beam, split into 1024 channels and sampled every 64 μs. Limits of the receiver package restrict us to a 340 MHz observing band centred at 1352 MHz. The factor of 8 improvement in frequency resolution over previous multibeam surveys allows us to probe deeper into the Galactic plane for short-duration signals such as the pulses from millisecond pulsars. We plan to survey the entire southern sky in 42 641 pointings, split into low, mid and high Galactic latitude regions, with integration times of 4200, 540 and 270 s, respectively. Simulations suggest that we will discover 400 pulsars, of which 75 will be millisecond pulsars. With ∼30 per cent of the mid-latitude survey complete, we have redetected 223 previously known pulsars and discovered 27 pulsars, five of which are millisecond pulsars. The newly discovered millisecond pulsars tend to have larger dispersion measures than those discovered in previous surveys, as expected from the improved time and frequency resolution of our instrument.
Monthly Notices of the Royal Astronomical Society | 2015
E. Petroff; M. Bailes; E. D. Barr; B. R. Barsdell; N. D. R. Bhat; Fuyan Bian; S. Burke-Spolaor; M. Caleb; D. J. Champion; P. Chandra; G. S. Da Costa; C. Delvaux; Chris Flynn; N. Gehrels; J. Greiner; A. Jameson; S. Johnston; Mansi M. Kasliwal; E. F. Keane; Stefan C. Keller; J. Kocz; M. Kramer; G. Leloudas; Daniele Malesani; John S. Mulchaey; C. Ng; Eran O. Ofek; Daniel A. Perley; A. Possenti; Brian Paul Schmidt
Fast radio bursts (FRBs) are one of the most tantalizing mysteries of the radio sky; their progenitors and origins remain unknown and until now no rapid multiwavelength follow-up of an FRB has been possible. New instrumentation has decreased the time between observation and discovery from years to seconds, and enables polarimetry to be performed on FRBs for thefirst time. We have discovered an FRB (FRB 140514) in real-time on 2014 May 14 at 17:14:11.06 UTCattheParkesradiotelescopeandtriggeredfollow-upatotherwavelengthswithinhoursof theevent.FRB140514wasfoundwithadispersionmeasure(DM)of562.7(6)cm −3 pc,giving an upper limit on source redshift of z 0.5. FRB 140514 was found to be 21 ± 7 per cent (3σ) circularly polarized on the leading edge with a 1σ upper limit on linear polarization <10 per cent. We conclude that this polarization is intrinsic to the FRB. If there was any intrinsic linear polarization, as might be expected from coherent emission, then it may have been depolarized by Faraday rotation caused by passing through strong magnetic fields and/or high-density environments. FRB 140514 was discovered during a campaign to re-observe known FRB fields, and lies close to a previous discovery, FRB 110220; based on the difference in DMs of these bursts and time-on-sky arguments, we attribute the proximity to sampling bias and conclude that they are distinct objects. Follow-up conducted by 12 telescopes observing from X-ray to radio wavelengths was unable to identify a variable multiwavelength counterpart, allowing us to rule out models in which FRBs originate from nearby ( z< 0.3) supernovae and long duration gamma-ray bursts.
Nature | 2016
E. F. Keane; S. Johnston; S. Bhandari; E. D. Barr; N. D. R. Bhat; M. Burgay; M. Caleb; Chris Flynn; A. Jameson; M. Kramer; E. Petroff; A. Possenti; W. van Straten; M. Bailes; S. Burke-Spolaor; R. P. Eatough; B. W. Stappers; Tomonori Totani; Mareki Honma; Hisanori Furusawa; Takashi Hattori; Yuu Niino; H. Sugai; Tsuyoshi Terai; Nozomu Tominaga; Shotaro Yamasaki; Naoki Yasuda; R. Allen; Jeff Cooke; J. Jencson
In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy’s redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called ‘missing baryons’. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.E. F. Keane, S. Johnston, S. Bhandari, E. Barr, N. D. R. Bhat, M. Burgay, M. Caleb, C. Flynn, A. Jameson, M. Kramer, E. Petroff, A. Possenti, W. van Straten, M. Bailes, S. Burke-Spolaor, R. P. Eatough, B. Stappers, T. Totani, M. Honma, H. Furusawa, T. Hattori, T. Morokuma, Y. Niino, H. Sugai, T. Terai, N. Tominaga, S. Yamasaki, N. Yasuda, R. Allen, J. Cooke, J. Jencson, M. M. Kasliwal, D. L. Kaplan, S. J. Tingay, A. Williams, R. Wayth, P. Chandra, D. Perrodin, M. Berezina, M. Mickaliger & C. Bassa
Monthly Notices of the Royal Astronomical Society | 2016
D. J. Champion; E. Petroff; M. Kramer; M. J. Keith; M. Bailes; E. D. Barr; S. D. Bates; N. D. R. Bhat; M. Burgay; S. Burke-Spolaor; C. M. L. Flynn; A. Jameson; S. Johnston; C. Ng; L. Levin; A. Possenti; B. W. Stappers; W. van Straten; David J. Thornton; C. Tiburzi; A. G. Lyne
The detection of five new fast radio bursts (FRBs) found in the 1.4-GHz High Time Resolution Universe high-latitude survey at Parkes, is presented. The rate implied is 7(-3)(+5) x 10(3) (95 per cent) FRBs sky(-1) d(-1) above a fluence of 0.13 Jy ms for an FRB of 0.128 ms duration to 1.5 Jy ms for 16 ms duration. One of these FRBs has a two-component profile, in which each component is similar to the known population of single component FRBs and the two components are separated by 2.4 +/- 0.4 ms. All the FRB components appear to be unresolved following deconvolution with a scattering tail and accounting for intrachannel smearing. The two-component burst, FRB 121002, also has the highest dispersion measure (1629 pc cm(-3)) of any FRB to-date. Many of the proposed models to explain FRBs use a single high-energy event involving compact objects (such as neutron-star mergers) and therefore cannot easily explain a two-component FRB. Models that are based on extreme versions of flaring, pulsing, or orbital events, however, could produce multiple component profiles. The compatibility of these models and the FRB rate implied by these detections is discussed.
Publications of the Astronomical Society of Australia | 2016
E. Petroff; E. D. Barr; A. Jameson; E. F. Keane; M. Bailes; M. Kramer; V. Morello; D. Tabbara; W. van Straten
Here we present a catalogue of known Fast Radio Burst (FRB) sources in the form of an online catalogue, FRBCAT. The catalogue includes information about the instrumentation used for the observations for each detected burst, the measured quantities from each observation, and model-dependent quantities derived from observed quantities. To aid in consistent comparisons of burst properties such as width and signal-to-noise ratios we have reprocessed all the bursts for which we have access to the raw data, with software which we make available. The originally derived properties are also listed for comparison. The catalogue is hosted online as a MySQL database which can also be downloaded in tabular or plain text format for off-line use. This database will be maintained for use by the community for studies of the FRB population as it grows.
The Astrophysical Journal | 2015
V. Ravi; R. M. Shannon; A. Jameson
We report the real-time discovery of a fast radio burst (FRB 131104) with the Parkes radio telescope in a targeted observation of the Carina dwarf spheroidal galaxy. The dispersion measure of the burst is 779 cm
Science | 2016
V. Ravi; R. M. Shannon; M. Bailes; K. Bannister; S. Bhandari; N. D. R. Bhat; S. Burke-Spolaor; M. Caleb; Chris Flynn; A. Jameson; S. Johnston; E. F. Keane; M. Kerr; C. Tiburzi; Artem V. Tuntsov; H. K. Vedantham
^{-3}
Monthly Notices of the Royal Astronomical Society | 2011
S. Burke-Spolaor; M. Bailes; S. Johnston; S. D. Bates; N. D. R. Bhat; M. Burgay; N. D’Amico; A. Jameson; M. J. Keith; M. Kramer; Lina Levin; S. Milia; Andrea Possenti; B. W. Stappers; W. van Straten
pc, exceeding predictions for the maximum line-of-sight Galactic contribution by a factor of 11. The temporal structure of the burst is characterized by an exponential scattering tail with a timescale of 2.0
Monthly Notices of the Royal Astronomical Society | 2012
M. J. Keith; S. Johnston; M. Bailes; S. D. Bates; N. D. R. Bhat; M. Burgay; S. Burke-Spolaor; N. D’Amico; A. Jameson; M. Kramer; Lina Levin; S. Milia; Andrea Possenti; B. W. Stappers; W. van Straten; D. Parent
^{+0.8}_{-0.5}