Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Karolina Palucka is active.

Publication


Featured researches published by A. Karolina Palucka.


Journal of Experimental Medicine | 2003

Interferon and Granulopoiesis Signatures in Systemic Lupus Erythematosus Blood

Lynda Bennett; A. Karolina Palucka; Edsel Arce; Victoria Cantrell; Josef Borvak; Jacques Banchereau; Virginia Pascual

Systemic lupus erythematosus (SLE) is a prototype systemic autoimmune disease characterized by flares of high morbidity. Using oligonucleotide microarrays, we now show that active SLE can be distinguished by a remarkably homogeneous gene expression pattern with overexpression of granulopoiesis-related and interferon (IFN)-induced genes. Using the most stringent statistical analysis (Bonferroni correction), 15 genes were found highly up-regulated in SLE patients, 14 of which are targets of IFN and one, defensin DEFA-3, a major product of immature granulocytes. A more liberal correction (Benjamini and Hochberg correction) yielded 18 additional genes, 12 of which are IFN-regulated and 4 granulocyte-specific. Indeed immature neutrophils were identified in a large fraction of SLE patients white blood cells. High dose glucocorticoids, a standard treatment of disease flares, shuts down the interferon signature, further supporting the role of this cytokine in SLE. The expression of 10 genes correlated with disease activity according to the SLEDAI. The most striking correlation (P < 0.001, r = 0.55) was found with the formyl peptide receptor-like 1 protein that mediates chemotactic activities of defensins. Therefore, while the IFN signature confirms the central role of this cytokine in SLE, microarray analysis of blood cells reveals that immature granulocytes may be involved in SLE pathogenesis.


Nature Reviews Immunology | 2005

Dendritic cells as therapeutic vaccines against cancer

Jacques Banchereau; A. Karolina Palucka

Mouse studies have shown that the immune system can reject tumours, and the identification of tumour antigens that can be recognized by human T cells has facilitated the development of immunotherapy protocols. Vaccines against cancer aim to induce tumour-specific effector T cells that can reduce the tumour mass, as well as tumour-specific memory T cells that can control tumour relapse. Owing to their capacity to regulate T-cell immunity, dendritic cells are increasingly used as adjuvants for vaccination, and the immunogenicity of antigens delivered by dendritic cells has now been shown in patients with cancer. A better understanding of how dendritic cells regulate immune responses will allow us to better exploit these cells to induce effective antitumour immunity.


Immunity | 2003

Plasmacytoid Dendritic Cells Induce Plasma Cell Differentiation through Type I Interferon and Interleukin 6

Gaetan Jego; A. Karolina Palucka; Jean-Philippe Blanck; Cecile Chalouni; Virginia Pascual; Jacques Banchereau

Dendritic cells (DCs) initiate and control immune responses. Plasmacytoid DCs (pDCs) represent a unique DC subset able to promptly release large amounts of type I interferon (IFN-alphabeta) upon viral encounter. Here we report that depletion of pDCs from human blood mononuclear cells abrogates the secretion of specific and polyclonal IgGs in response to influenza virus. Furthermore, purified pDCs triggered with virus induce CD40-activated B cells to differentiate into plasma cells. Two pDC cytokines act sequentially, with IFN-alphabeta generating non-Ig-secreting plasma blasts and IL-6 inducing their differentiation into Ig-secreting plasma cells. These plasma cells display the high levels of CD38 found on tissue plasma cells. Thus, pDCs are critical for the generation of plasma cells and antibody responses.


Nature Immunology | 2000

IL-6 switches the differentiation of monocytes from dendritic cells to macrophages

Pascale Chomarat; Jacques Banchereau; Jean Davoust; A. Karolina Palucka

Monocytes can give rise to either antigen presenting dendritic cells (DCs) or scavenging macrophages. This differentiation is initiated when monocytes cross the endothelium. But the regulation of DC and macrophage differentiation in tissues remains elusive. When stimulated with granulocyte–macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4), monocytes yield DCs. However, we show here that the addition of fibroblasts switches differentiation to macrophages. On contact with monocytes, fibroblasts release IL-6, which up-regulates the expression of functional M-CSF receptors on monocytes. This allows the monocytes to consume their autocrine M-CSF. Thus, the interplay between IL-6 and M-CSF switches monocyte differentiation to macrophages rather than DCs, and IL-6 is an essential factor in the molecular control of antigen presenting cell development.


Science | 2013

Neutralizing Tumor-Promoting Chronic Inflammation: A Magic Bullet?

Lisa M. Coussens; Laurence Zitvogel; A. Karolina Palucka

A Shift in Cancers Inflammatory Balance One of the many factors that contribute to the initiation and progression of cancer is inflammation. Inflammation can support tumor development, both directly and indirectly, and tumors can promote a chronic inflammatory environment that results in immunosuppression, which benefits the tumor. Coussens et al. (p. 286) review the components of the immune system that contribute to the chronic inflammation seen in tumors. Potential therapies might shift this inflammatory environment toward one more characteristic of an acute, resolving inflammation, similar to what is observed during a pathogenic infection. Such a shift would relieve immunosuppression and drive antitumor immunity that, when combined with other therapies, may ultimately result in tumor cell clearance. There have been substantial advances in cancer diagnostics and therapies in the past decade. Besides chemotherapeutic agents and radiation therapy, approaches now include targeting cancer cell–intrinsic mediators linked to genetic aberrations in cancer cells, in addition to cancer cell–extrinsic pathways, especially those regulating vascular programming of solid tumors. More recently, immunotherapeutics have entered the clinic largely on the basis of the recognition that several immune cell subsets, when chronically activated, foster tumor development. Here, we discuss clinical and experimental studies delineating protumorigenic roles for immune cell subsets that are players in cancer-associated inflammation. Some of these cells can be targeted to reprogram their function, leading to resolution, or at least neutralization, of cancer-promoting chronic inflammation, thereby facilitating cancer rejection.


Immunity | 2008

Functional Specializations of Human Epidermal Langerhans Cells and CD14+ Dermal Dendritic Cells

Eynav Klechevsky; Rimpei Morita; Maochang Liu; Yanying Cao; Sebastien Coquery; LuAnn Thompson-Snipes; Francine Briere; Damien Chaussabel; Gerard Zurawski; A. Karolina Palucka; Yoram Reiter; Jacques Banchereau; Hideki Ueno

Little is known about the functional differences between the human skin myeloid dendritic cell (DC) subsets, epidermal CD207(+) Langerhans cells (LCs) and dermal CD14(+) DCs. We showed that CD14(+) DCs primed CD4(+) T cells into cells that induce naive B cells to switch isotype and become plasma cells. In contrast, LCs preferentially induced the differentiation of CD4(+) T cells secreting T helper 2 (Th2) cell cytokines and were efficient at priming and crosspriming naive CD8(+) T cells. A third DC population, CD14(-)CD207(-)CD1a(+) DC, which resides in the dermis, could activate CD8(+) T cells better than CD14(+) DCs but less efficiently than LCs. Thus, the human skin displays three DC subsets, two of which, i.e., CD14(+) DCs and LCs, display functional specializations, the preferential activation of humoral and cellular immunity, respectively.


Cell | 2001

Dendritic cells as vectors for therapy.

Jacques Banchereau; Beatrice Schuler-Thurner; A. Karolina Palucka; Gerold Schuler

DCs are an attractive target for therapeutic manipulation of the immune system, to enhance insufficient immune responses, in infectious diseases and cancer, or attenuate excessive immune responses, in allergy and autoimmunity. However, the complexity of the DC system brings about the necessity for its rational manipulation to achieve protective or therapeutic immunity. Immunization with ex vivo generated DC has proven feasible, and permits the enhancement as well as the dampening of antigen-specific immune responses in man. These ex vivo strategies should help identify the parameters for DC targeting in vivo. Todays studies are also considering the relationship of DCs to the correction of pathologic or undesired immune responses, like allergic and autoimmune diseases, graft rejection, and graft versus host disease.


Immunity | 2008

A Modular Analysis Framework for Blood Genomics Studies: Application to Systemic Lupus Erythematosus

Damien Chaussabel; Charles Quinn; Jing Shen; Pinakeen Patel; Casey Glaser; Nicole Baldwin; Dorothee Stichweh; Derek Blankenship; Lei Li; Indira Munagala; Lynda Bennett; Florence Allantaz; Asuncion Mejias; Monica I. Ardura; Ellen Kaizer; Laurence Monnet; Windy Allman; Henry B. Randall; Diane Johnson; Aimee Lanier; Marilynn Punaro; Knut M. Wittkowski; Perrin C. White; Joseph W. Fay; Goran B. Klintmalm; Octavio Ramilo; A. Karolina Palucka; Jacques Banchereau; Virginia Pascual

The analysis of patient blood transcriptional profiles offers a means to investigate the immunological mechanisms relevant to human diseases on a genome-wide scale. In addition, such studies provide a basis for the discovery of clinically relevant biomarker signatures. We designed a strategy for microarray analysis that is based on the identification of transcriptional modules formed by genes coordinately expressed in multiple disease data sets. Mapping changes in gene expression at the module level generated disease-specific transcriptional fingerprints that provide a stable framework for the visualization and functional interpretation of microarray data. These transcriptional modules were used as a basis for the selection of biomarkers and the development of a multivariate transcriptional indicator of disease progression in patients with systemic lupus erythematosus. Thus, this work describes the implementation and application of a methodology designed to support systems-scale analysis of the human immune system in translational research settings.


Immunological Reviews | 2007

Dendritic cell subsets in health and disease

Hideki Ueno; Eynav Klechevsky; Rimpei Morita; Caroline Aspord; Tinghua Cao; Toshimichi Matsui; Tiziana Di Pucchio; John Connolly; Joseph W. Fay; Virginia Pascual; A. Karolina Palucka; Jacques Banchereau

Summary:  The dendritic cell (DC) system of antigen‐presenting cells controls immunity and tolerance. DCs initiate and regulate immune responses in a manner that depends on signals they receive from microbes and their cellular environment. They allow the immune system to make qualitatively distinct responses against different microbial infections. DCs are composed of subsets that express different microbial receptors and express different surface molecules and cytokines. Our studies lead us to propose that interstitial (dermal) DCs preferentially activate humoral immunity, whereas Langerhans cells preferentially induce cellular immunity. Alterations of the DC system result in diseases such as autoimmunity, allergy, and cancer. Conversely, DCs can be exploited for vaccination, and novel vaccines that directly target DCs in vivo are being designed.


The Lancet | 2008

Tumour immunity : effector response to tumour and role of the microenvironment

Alberto Mantovani; Pedro Romero; A. Karolina Palucka; Francesco M. Marincola

Substantial evidence shows that inflammation promotes oncogenesis and, occasionally, participates in cancer rejection. This paradox can be accounted for by a dynamic switch from chronic smouldering inflammation promoting cancer-cell survival to florid, tissue-disruptive inflammatory reactions that trigger cancer-cell destruction. Clinical and experimental observations suggest that the mechanism of this switch recapitulates the events associated with pathogen infection, which stimulate immune cells to recognise danger signals and activate immune effector functions. Generally, cancers do not have danger signals and, therefore, they cannot elicit strong immune reactions. Synthetic molecules have been developed that mimic pathogen invasion at the tumour site. These compounds activate dendritic cells to produce proinflammatory cytokines, which in turn trigger cytotoxic mechanisms leading to cancer death. Simultaneously, dendritic cells capture antigen shed by dying cancer cells, undergo activation, and stimulate antigen-specific T and B cells. This process results in massive amplification of the antineoplastic inflammatory process. Thus, although anti-inflammatory drugs can prevent onset of some malignant diseases, induction of T cells specific for tumour antigen by active immunisation, combined with powerful activation signals within the cancer microenvironment, might yield the best strategy for treatment of established cancers.

Collaboration


Dive into the A. Karolina Palucka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideki Ueno

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge