A. L. Ksenofontov
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. L. Ksenofontov.
Journal of Virology | 2001
Ludmila A. Baratova; Aleksander V. Efimov; Eugenie N. Dobrov; Natalija V. Fedorova; Reet Hunt; G. A. Badun; A. L. Ksenofontov; Lesley Torrance; Lilian Järvekülg
ABSTRACT Potato virus A (PVA) particles were bombarded with thermally activated tritium atoms, and the intramolecular distribution of the label in the amino acids of the coat protein was determined to assess their in situ steric accessibility. This method revealed that the N-terminal 15 amino acids of the PVA coat protein and a region comprising amino acids 27 to 50 are the most accessible at the particle surface to labeling with tritium atoms. A model of the spatial arrangement of the PVA coat protein polypeptide chain within the virus particle was derived from the experimental data obtained by tritium bombardment combined with predictions of secondary-structure elements and the principles of packing α-helices and β-structures in proteins. The model predicts three regions of tertiary structure: (i) the surface-exposed N-terminal region, comprising an unstructured N terminus of 8 amino acids and two β-strands, (ii) a C-terminal region including two α-helices, as well as three β-strands that form a two-layer structure called an abCd unit, and (iii) a central region comprising a bundle of four α-helices in a fold similar to that found in tobacco mosaic virus coat protein. This is the first model of the three-dimensional structure of a potyvirus coat protein.
Molecular Biology | 2006
A. L. Ksenofontov; V. S. Kozlovskii; Larisa V. Kordyukova; Victor A. Radyukhin; A. V. Timofeeva; E. N. Dobrov
Light scattering is known to make a considerable contribution to ultraviolet absorption spectra of influenza virus (Flu) preparations. We applied extrapolation to analysis of this contribution. Ultraviolet spectra were recorded and true extinction coefficients (A1 cm, 2800.1%) were determined in suspensions of intact virions of Flu strain Puerto Rico/8/34 and subviral particles obtained by bromelain digestion of the same strain (1.26 ± 0.17 and 0.96 ± 0.11 OD, respectively). This allowed simple and rapid measurement of virus concentration. It was shown that UV spectra allowed efficient monitoring of virion aggregation. The pH dependence of aggregation properties of influenza subviral particles was studied.
Protein and Peptide Letters | 2004
Larisa V. Kordyukova; A. L. Ksenofontov; Marina V. Serebryakova; Tatyana V. Ovchinnikova; Natalija V. Fedorova; Ivanova Vt; Ludmila A. Baratova
MALDI-TOF MS and N-terminal amino acid sequencing allowed us to identify several fragments of the C-terminal peptide of Influenza A hemagglutinin (HA) containing transmembrane domains (TMD). These fragments were detected in the organic phase of chloroform-methanol extracts from bromelain-treated virus particles. Heterogeneous fatty acylation of the C-terminus was revealed. Tritium bombardment technique might open an opportunity for 3D structural investigation of the HA TMD in situ.
Archives of Virology | 2008
Victor A. Radyukhin; Nataliya V. Fedorova; A. L. Ksenofontov; Marina V. Serebryakova; L. A. Baratova
Membrane solubilization with a mixture of cold non-ionic detergents has been applied to isolate detergent-resistant membranes from intact virus A lipid bilayer. Association of the viral envelope glycoproteins and M1 into a raft lipid-protein complex was verified via detergent insolubility experiments, and the M1:HA stoichiometry of the proposed supramolecular complex was estimated via amino acid analysis. Electron microscopy and dynamic light scattering data revealed that these lipid-protein rafts form unilamellar vesicles with HA spikes on their surfaces similar to influenza virus virions. Together, our data suggest that the cold co-extraction technique visualizes the raft-like nature of the viral envelope and demonstrates the interaction of matrix M1 protein with the envelope.
Bioscience Reports | 2001
Larisa V. Kordyukova; A. L. Ksenofontov; G. A. Badun; L. A. Baratova; Alexander V. Shishkov
Bilayer liposomes from a mixture of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine (DPPC:DPPE=8:2, molar ratio) or DPPC labeled with 14C-DPPC (DPPC:14C-DPPC) were bombarded with thermally activated tritium atoms. The tritiated liposomes were hydrolyzed by phospholipase C, and the tritium incorporation into different parts of the bilayer along its thickness was determined. The tritium flux attenuation coefficients were calculated for the headgroup (k1=0.176±0.032 Å−1) and acylglycerol residue (k2=0.046±0.004 Å−1) layers indicating a preferential attenuation of the tritium flux in the headgroup region and relative transparence of the membrane hydrophobic part. The finding is potentially important to apply tritium bombardment for investigation of spatial organization of transmembrane proteins in their native lipid environment.
Bioelectrochemistry | 2002
Alexander V. Shishkov; A. L. Ksenofontov; Elena N. Bogacheva; Larisa V. Kordyukova; G. A. Badun; A.V. Alekseevsky; V.I. Tsetlin; L. A. Baratova
The topography of bacteriorhodopsin (bR) in situ was earlier studied by using the tritium bombardment approach [Eur. J. Biochem. 178 (1988) 123]. Now, having the X-ray crystallography data of bR at atom resolution [Proc. Natl. Acad. Sci. 95 (1998) 11673], we estimated the influence of membrane environment (lipid and protein) on tritium incorporation into amino acid residues forming transmembrane helices. We have determined the tritium flux attenuation coefficients for residues 10-29 of helix A. They turned out to be low (0.04+/-0.02 A(-1)) for residues adjacent to the lipid matrix, and almost fourfold higher (0.15+/-0.05 A(-1)) for those oriented to the neighboring transmembrane helices. We believe that tritium incorporation data could help modeling transmembrane segment arrangement in the membrane.
Russian Journal of Bioorganic Chemistry | 2014
Yu. A. Zolotarev; A. K. Dadayan; V. S. Kozik; Eugene V. Gasanov; Igor V. Nazimov; R. Kh. Ziganshin; B. V. Vaskovsky; A. N. Murashov; A. L. Ksenofontov; O. N. Kharybin; E. N. Nikolaev; N. F. Myasoedov
Reaction of a high-temperature solid-phase catalytic isotope exchange in peptides and proteins under the action of the catalytically activated spillover hydrogen was studied. The reaction of human recombinant insulin with deuterium and tritium at 120–140°C resulted in an incorporation of 2–6 isotope hydrogen atoms per one insulin molecule. The distribution of the isotopic label by amino acid residues of the tritium-labeled insulin was determined by the oxidation of the protein S-S-bonds by performic acid, separation of polypeptide chains, their subsequent acidic hydrolysis, amino acid analysis, and liquid scintillation counts of tritium in the amino acids. The isotopic label was shown to be incorporated in all the amino acid residues of the protein, but the higher inclusion was observed for the FVNQHLCGSHLVE peptide fragment (B1–13) of the insulin B-chain, and the His5 and His10 residues of this fragment contained approximately 45% of the whole isotopic label of the protein. Reduction of the S-S-bonds by 2-mercaptoethanol, enzymatic hydrolysis by glutamyl endopeptidase from Bacillus intermedius, and HPLC fractionation of the obtained peptides were also used for the analysis of the distribution of the isotopic label in the peptide fragments of the labeled insulin. Peptide fragments which were formed after the hydrolysis of the Glu-Xaa bond of the B-chain were identified by mass spectrometry. The mass spectrometric analysis of the isotopomeric composition of the deuterium-labeled insulin demonstrated that all the protein molecules participated equally in the reaction of the solid-phase hydrogen isotope exchange. The tritium-labeled insulin preserved the complete physiological activity.
Biochemistry | 2003
M. A. Orlova; T. A. Chubar; V.A. Fechina; O. V. Ignatenko; G. A. Badun; A. L. Ksenofontov; I. V. Uporov; Irina G. Gazaryan
Significant conformational differences between native and recombinant horseradish peroxidase have been shown by tritium planigraphy, which includes a method of thermal activation of tritium followed by amino acid analysis of the protein preparation. Comparison of radioactivity distribution among the amino acid residues with the theoretical (calculated) accessibility shows that the recombinant enzyme is characterized by high hydrophobicity and compactness of folding. The protective role of oligosaccharides in native enzyme has been confirmed. An unexpected result of the study is a finding on high accessibility of a catalytic histidine residue in solution. An effect of low dose (3 Gy) of irradiation on the accessibility of amino acid residues has been unequivocally demonstrated. The data can be interpreted as swelling of the compact folding and increase in the surface hydrophilicity of the recombinant enzyme. In the case of native enzyme, irradiation does not cause remarkable changes in the accessibility of amino acid residues indicating the possible extensive radical modification of the native enzyme in the life-course of the cell. The catalytic histidine is an exception. It becomes inaccessible after the enzyme irradiation, while its accessibility in the recombinant enzyme increases. An additional observation of a 5-fold decrease in the rate constant towards hydrogen peroxide points to the destructive effect of irradiation on the hydrogen bond network in the distal domain of the native enzyme molecule and partial collapse of the active site pocket.
Biochemistry | 2017
P. M. Tsepkova; A. V. Artiukhov; A. I. Boyko; V. A. Aleshin; Garik Mkrtchyan; M. A. Zvyagintseva; S. I. Ryabov; A. L. Ksenofontov; L. A. Baratova; A. V. Graf; Victoria I. Bunik
Molecular mechanisms of long-term changes in brain metabolism after thiamine administration (single i.p. injection, 400 mg/kg) were investigated. Protocols for discrimination of the activities of the thiamine diphosphate (ThDP)-dependent 2-oxoglutarate and 2-oxoadipate dehydrogenases were developed to characterize specific regulation of the multienzyme complexes of the 2-oxoglutarate (OGDHC) and 2-oxoadipate (OADHC) dehydrogenases by thiamine. The thiamine-induced changes depended on the brain-region-specific expression of the ThDP-dependent dehydrogenases. In the cerebral cortex, the original levels of OGDHC and OADHC were relatively high and not increased by thiamine, whereas in the cerebellum thiamine upregulated the OGDHC and OADHC activities, whose original levels were relatively low. The effects of thiamine on each of the complexes were different and associated with metabolic rearrangements, which included (i) the brain-region-specific alterations of glutamine synthase and/or glutamate dehydrogenase and NADP+-dependent malic enzyme, (ii) the brain-region-specific changes of the amino acid profiles, and (iii) decreased levels of a number of amino acids in blood plasma. Along with the assays of enzymatic activities and average levels of amino acids in the blood and brain, the thiamine-induced metabolic rearrangements were assessed by analysis of correlations between the levels of amino acids. The set and parameters of the correlations were tissue-specific, and their responses to the thiamine treatment provided additional information on metabolic changes, compared to that gained from the average levels of amino acids. Taken together, the data suggest that thiamine decreases catabolism of amino acids by means of a complex and long-term regulation of metabolic flux through the tricarboxylic acid cycle, which includes coupled changes in activities of the ThDP-dependent dehydrogenases of 2-oxoglutarate and 2-oxoadipate and adjacent enzymes.
Molecular Biology | 2011
A. L. Ksenofontov; E. N. Dobrov; Natalia V. Fedorova; Victor A. Radyukhin; G. A. Badun; Alexander M. Arutyunyan; E. N. Bogacheva; Ludmila A. Baratova
The M1 matrix protein of the influenza virus is one of the main structural components of the virion that performs several different functions in the infected cell. X-ray analysis (with 2.08 Å resolution) has been performed for the N-terminal part of the M1 protein (residues 2–158) but not for its C-terminal domain (159–252). In the present study, we analyzed the structure of the M1 protein of the influenza virus A/Puerto Rico/8/34 (H1N1) strain in acidic solution using tritium planigraphy. The incorporation of tritium label into the domains of the M1 protein were studied; the C domain and the interdomain loops are preferentially accessible to tritium. Analytical centrifugation and dynamic laser light scattering demonstrated anomalous hydrodynamic parameters and low structuredness of the M1 protein, which has also been confirmed by circular dichroism data. Bioinformatic analysis of the M1 protein sequence revealed intrinsically unstructured segments that were concentrated in the C domain and interdomain loops between the N-, M-, and C domains. We suggest that the multifunctionality of the M1 protein in a cell is determined by the plasticity of its tertiary structure, which is caused by the presence of intrinsically unstructured segments.