Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia V. Fedorova is active.

Publication


Featured researches published by Natalia V. Fedorova.


PLOS ONE | 2013

Structural Analysis of Influenza A Virus Matrix Protein M1 and Its Self-Assemblies at Low pH

Eleonora V. Shtykova; L. A. Baratova; Natalia V. Fedorova; Victor A. Radyukhin; Alexander L. Ksenofontov; V. V. Volkov; Alexander V. Shishkov; Alexey A. Dolgov; Liudmila A. Shilova; Oleg V. Batishchev; Cy M. Jeffries; Dmitri I. Svergun

Influenza A virus matrix protein M1 is one of the most important and abundant proteins in the virus particles broadly involved in essential processes of the viral life cycle. The absence of high-resolution data on the full-length M1 makes the structural investigation of the intact protein particularly important. We employed synchrotron small-angle X-ray scattering (SAXS), analytical ultracentrifugation and atomic force microscopy (AFM) to study the structure of M1 at acidic pH. The low-resolution structural models built from the SAXS data reveal a structurally anisotropic M1 molecule consisting of a compact NM-fragment and an extended and partially flexible C-terminal domain. The M1 monomers co-exist in solution with a small fraction of large clusters that have a layered architecture similar to that observed in the authentic influenza virions. AFM analysis on a lipid-like negatively charged surface reveals that M1 forms ordered stripes correlating well with the clusters observed by SAXS. The free NM-domain is monomeric in acidic solution with the overall structure similar to that observed in previously determined crystal structures. The NM-domain does not spontaneously self assemble supporting the key role of the C-terminus of M1 in the formation of supramolecular structures. Our results suggest that the flexibility of the C-terminus is an essential feature, which may be responsible for the multi-functionality of the entire protein. In particular, this flexibility could allow M1 to structurally organise the viral membrane to maintain the integrity and the shape of the intact influenza virus.


FEBS Journal | 2009

Tritium planigraphy study of structural alterations in the coat protein of Potato virus X induced by binding of its triple gene block 1 protein to virions

Elena V. Lukashina; G. A. Badun; Natalia V. Fedorova; Alexander L. Ksenofontov; Maria A. Nemykh; Marina V. Serebryakova; Anna Mukhamedzhanova; O.V. Karpova; N.P. Rodionova; L. A. Baratova; E. N. Dobrov

Alterations in Potato virus X (PVX) coat protein structure after binding of the protein, encoded by the first gene of PVX triple gene block (triple gene block 1 protein, TGBp1), to the virions were studied using tritium planigraphy. Previously, it has been shown that TGBp1 molecules interact with the PVX particle end, containing the 5′‐terminus of PVX RNA, and that this interaction results in a strong decrease in virion stability and its transformation to a translationally active state. In this work, it has been shown that the interaction of TGBp1 with PVX virions leads to an increase of ∼ 50% in tritium label incorporation into the 176–198 segment of the 236‐residue‐long PVX coat protein subunit, with some decrease in label incorporation into the N‐terminal coat protein region. According to the new ‘sandwich’ variant of our recently proposed model of the three‐dimensional structure of the intravirus PVX coat protein, the 176–198 segment is assigned to the β‐sheet region located at the subunit surface, presumably participating in coat protein interactions with the intravirus RNA and/or in protein–protein interactions, whereas the N‐terminal coat protein region corresponds to the other part of the same β‐sheet. For the remaining segments of the PVX coat protein subunit, no significant difference between tritium incorporation into untreated and TGBp1‐treated PVX was observed. A detailed description of the ‘sandwich’ version of the intravirus PVX coat protein model is presented.


Journal of Virology | 2016

pH-Dependent Formation and Disintegration of the Influenza A Virus Protein Scaffold To Provide Tension for Membrane Fusion

Oleg V. Batishchev; Liudmila A. Shilova; M. V. Kachala; Vsevolod Yu Tashkin; Valerij S. Sokolov; Natalia V. Fedorova; Liudmila A. Baratova; D. G. Knyazev; Joshua Zimmerberg; Yury A. Chizmadzhev

ABSTRACT Influenza virus is taken up from a pH-neutral extracellular milieu into an endosome, whose contents then acidify, causing changes in the viral matrix protein (M1) that coats the inner monolayer of the viral lipid envelope. At a pH of ∼6, M1 interacts with the viral ribonucleoprotein (RNP) in a putative priming stage; at this stage, the interactions of the M1 scaffold coating the lipid envelope are intact. The M1 coat disintegrates as acidification continues to a pH of ∼5 to clear a physical path for the viral genome to transit from the viral interior to the cytoplasm. Here we investigated the physicochemical mechanism of M1s pH-dependent disintegration. In neutral media, the adsorption of M1 protein on the lipid bilayer was electrostatic in nature and reversible. The energy of the interaction of M1 molecules with each other in M1 dimers was about 10 times as weak as that of the interaction of M1 molecules with the lipid bilayer. Acidification drives conformational changes in M1 molecules due to changes in the M1 charge, leading to alterations in their electrostatic interactions. Dropping the pH from 7.1 to 6.0 did not disturb the M1 layer; dropping it lower partially desorbed M1 because of increased repulsion between M1 monomers still stuck to the membrane. Lipid vesicles coated with M1 demonstrated pH-dependent rupture of the vesicle membrane, presumably because of the tension generated by this repulsive force. Thus, the disruption of the vesicles coincident with M1 protein scaffold disintegration at pH 5 likely stretches the lipid membrane to the point of rupture, promoting fusion pore widening for RNP release. IMPORTANCE Influenza remains a top killer of human beings throughout the world, in part because of the influenza viruss rapid binding to cells and its uptake into compartments hidden from the immune system. To attack the influenza virus during this time of hiding, we need to understand the physical forces that allow the internalized virus to infect the cell. In particular, we need to know how the protective coat of protein inside the viral surface reacts to the changes in acid that come soon after internalization. We found that acid makes the molecules of the protein coat push each other while they are still stuck to the virus, so that they would like to rip the membrane apart. This ripping force is known to promote membrane fusion, the process by which infection actually occurs.


FEBS Journal | 2011

Spatial structure peculiarities of influenza A virus matrix M1 protein in an acidic solution that simulates the internal lysosomal medium

Alexander V. Shishkov; Elena N. Bogacheva; Natalia V. Fedorova; Alexander L. Ksenofontov; G. A. Badun; Victor A. Radyukhin; Elena V. Lukashina; Marina V. Serebryakova; Alexey A. Dolgov; Alexey L. Chulichkov; E. N. Dobrov; L. A. Baratova

The structure of the C‐terminal domain of the influenza virus A matrix M1 protein, for which X‐ray diffraction data were still missing, was studied in acidic solution. Matrix M1 protein was bombarded with thermally‐activated tritium atoms, and the resulting intramolecular distribution of the tritium label was analyzed to assess the steric accessibility of the amino acid residues in this protein. This technique revealed that interdomain loops and the C‐terminal domain of the protein are the most accessible to labeling with tritium atoms. A model of the spatial arrangement of the C‐terminal domain of matrix M1 protein was generated using rosetta software adjusted to the data obtained by tritium planigraphy experiments. This model suggests that the C‐terminal domain is an almost flat layer with a three‐α‐helical structure. To explain the high level of tritium label incorporation into the C‐terminal domain of the M1 protein in an acidic solution, we also used independent experimental approaches (CD spectroscopy, limited proteolysis and MALDI‐TOF MS analysis of the proteolysis products, dynamic light scattering and analytical ultracentrifugation), as well as multiple computational algorithms, to analyse the intrinsic protein disorder. Taken together, the results obtained in the present study indicate that the C‐terminal domain is weakly structured. We hypothesize that the specific 3D structural peculiarities of the M1 protein revealed in acidic pH solution allow the protein greater structural flexibility and enable it to interact effectively with the components of the host cell.


Protein and Peptide Letters | 2009

The In Situ Structural Characterization of the Influenza A Virus Matrix M1 Protein within a Virion

Alexander V. Shishkov; Elena N. Bogacheva; Alexey A. Dolgov; Alexey L. Chulichkov; Denis G. Knyazev; Natalia V. Fedorova; Alexander L. Ksenofontov; Larisa V. Kordyukova; Elena V. Lukashina; Vladimir M. Mirsky; L. A. Baratova

The first attempt has been made to suggest a model of influenza A virus matrix M1 protein spatial structure and molecule orientation within a virion on the basis of tritium planigraphy data and theoretical prediction results. Limited in situ proteolysis of the intact virions with bromelain and surface plasmon resonance spectroscopy study of the M1 protein interaction with lipid coated surfaces were used for independent confirmation of the proposed model.


Molecular Plant Pathology | 2012

Analysis of the role of the coat protein N-terminal segment in Potato virus X virion stability and functional activity

Elena V. Lukashina; Alexander L. Ksenofontov; Natalia V. Fedorova; G. A. Badun; Anna Mukhamedzhanova; O.V. Karpova; N.P. Rodionova; L. A. Baratova; E. N. Dobrov

Previously, we have reported that intact Potato virus X (PVX) virions cannot be translated in cell-free systems, but acquire this capacity by the binding of PVX-specific triple gene block protein 1 (TGBp1) or after phosphorylation of the exposed N-terminal segment of intravirus coat protein (CP) by protein kinases. With the help of in vitro mutagenesis, a nonphosphorylatable PVX mutant (denoted ST PVX) was prepared in which all 12 S and T residues in the 20-residue-long N-terminal CP segment were substituted by A or G. Contrary to expectations, ST PVX was infectious, produced normal progeny and was translated in vitro in the absence of any additional factors. We suggest that the N-terminal PVX CP segment somehow participates in virion assembly in vivo and that CP subunits in ST virions may differ in structure from those in the wild-type (UK3 strain). In the present work, to test this suggestion, we performed a comparative tritium planigraphy study of CP structure in UK3 and ST virions. It was found that the profile of tritium incorporation into ST mutant virions in some CP segments differed from that of normal UK3 virions and from UK3 complexed with the PVX movement protein TGBp1. It is proposed that amino acid substitutions in ST CP and the TGBp1-driven remodelling of UK3 virions induce structural alterations in intravirus CPs. These alterations affect the predicted RNA recognition motif of PVX CP, but in different ways: for ST PVX, labelling is increased in α-helices 6 and 7, whereas, in remodelled UK3, labelling is increased in the β-sheet strands β3, β4 and β5.


Protein and Peptide Letters | 2008

Influenza A virus M1 protein structure probed by in situ limited proteolysis with bromelain.

Larisa V. Kordyukova; Marina V. Serebryakova; Vladimir Y. Polyakov; T. V. Ovchinnikova; Yu. A. Smirnova; Natalia V. Fedorova; Ludmila A. Baratova

Influenza A virus matrix M1 protein is membrane associated and plays a crucial role in virus assembly and budding. The N-terminal two thirds of M1 protein was resolved by X-ray crystallography. The overall 3D structure as well as arrangement of the molecule in relation to the viral membrane remains obscure. Now a proteolytic digestion of virions with bromelain was used as an instrument for the in situ assessment of the M1 protein structure. The lipid bilayer around the subviral particles lacking glycoprotein spikes was partially disrupted as was shown by transmission electron microscopy. A phenomenon of M1 protein fragmentation inside the subviral particles was revealed by SDS-PAGE analysis followed by in-gel trypsin hydrolysis and MALDI-TOF mass spectrometry analysis of the additional bands. Putative bromelain-digestion sites appeared to be located at the surface of the M1 protein globule and could be used as landmarks for 3D molecular modeling.


PLOS ONE | 2013

Partially disordered structure in intravirus coat protein of potyvirus potato virus A.

Alexander L. Ksenofontov; Viiu Paalme; Alexander M. Arutyunyan; Pavel I. Semenyuk; Natalia V. Fedorova; Reet Rumvolt; Ludmila A. Baratova; Lilian Järvekülg; E. N. Dobrov

Potyviruses represent the most biologically successful group of plant viruses, but to our knowledge, this work is the first detailed study of physicochemical characteristics of potyvirus virions. We measured the UV absorption, far and near UV circular dichroism spectra, intrinsic fluorescence spectra, and differential scanning calorimetry (DSC) melting curves of intact particles of a potato virus A (PVA). PVA virions proved to have a peculiar combination of physicochemical properties. The intravirus coat protein (CP) subunits were shown to contain an unusually high fraction of disordered structures, whereas PVA virions had an almost normal thermal stability. Upon heating from 20°C to 55°C, the fraction of disordered structures in the intravirus CP further increased, while PVA virions remained intact at up to 55°C, after which their disruption (and DSC melting) started. We suggest that the structure of PVA virions below 55°C is stabilized by interactions between the remaining structured segments of intravirus CP. It is not improbable that the biological efficiency of PVA relies on the disordered structure of intravirus CP.


Biochimica et Biophysica Acta | 2012

Proteome analysis identified human neutrophil membrane tubulovesicular extensions (cytonemes, membrane tethers) as bactericide trafficking

Svetlana I. Galkina; Natalia V. Fedorova; Marina V. Serebryakova; Julia M. Romanova; Sergei A. Golyshev; Vladimir I. Stadnichuk; Ludmila A. Baratova; Galina F. Sud'ina; Thomas Klein

BACKGROUND Following adhesion to fibronectin neutrophils can develop membrane tubulovesicular extensions (TVEs) that can be 200nm wide and several cell diameters long. TVEs attach neutrophils to the other cells, substrata or bacteria over distance. To understand the physiological significance of TVEs we performed proteome analysis of TVE content in neutrophils plated to fibronectin in the presence of compounds known to induce TVE formation (nitric oxide donor diethylamine NONOate, 4-bromophenacyl bromide, cytochalasin D). METHODS Development of TVEs was confirmed by scanning electron microscopy. TVEs were disrupted following removal of inductors and biochemical, high-performance liquid chromatography and mass spectrometry investigations were employed to characterize the proteins within the incubation media. RESULTS TVE disruption released (a) the granular bactericides lactoferrin, lipocalin, myeloperoxidase, cathepsin G and defensins; (b) energy metabolism enzymes; (c) actin cytoskeleton proteins; (d) S100 proteins; and (e) annexin 1. CONCLUSIONS The data confirm that TVEs represent a means of secretory bactericide trafficking, where the protrusions fuse with the plasma membrane upon neutrophil adhesion or extend from the cell surface when fusion is impaired. It is proposed that proteins abundantly presented in TVE (energy metabolism enzymes, actin cytoskeleton and S100 proteins, annexin 1) play an important role in fusion of TVE with the plasma membrane. GENERAL SIGNIFICANCE Our study confirms TVEs as neutrophil secretory protrusions that make direct contacts with cells and bacteria over distance. The membrane-packed content and outstanding length of TVEs might allow targeted neutrophil secretion of aggressive bactericides over a long distance without dilution or injury to surrounding tissues.


Journal of Chromatography B: Biomedical Sciences and Applications | 1998

Covalent chromatography of influenza virus membrane M1 protein on activated thiopropyl Sepharose-6B.

Natalia V. Fedorova; Alexander L. Ksenofontov; M.B. Viryasov; L. A. Baratova; Timofeeva Ta; Zhirnov Op

The M1 protein of influenza virus is a highly hydrophobic polypeptide that is resistant to enzyme cleavage during incubation in water solutions. We show here that the M1 protein that is immobilized on an insoluble activated support (thiopropyl Sepharose-6B) by means of a thiol-disulfide exchange reaction acquires sensitivity to trypsin. After tryptic digestion noncysteine-containing peptides of M1 were removed by washing the support, while cysteine-containing ones were detached from the support by reduction. As a result, 24 unique tryptic peptides of M1 protein were clearly separated by reversed-phase high-performance liquid chromatography. The described method opens a new way to the investigation of functional properties of distinct domains of viral thiol proteins.

Collaboration


Dive into the Natalia V. Fedorova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. A. Badun

Moscow State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. N. Dobrov

Moscow State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oleg V. Batishchev

Moscow Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liudmila A. Shilova

Moscow Institute of Physics and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge