A. M. Di Lellis
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. M. Di Lellis.
Space Science Reviews | 1997
H. Rème; J. M. Bosqued; J.-A. Sauvaud; A. Cros; J. Dandouras; C. Aoustin; J. Bouyssou; Th. Camus; J. Cuvilo; Ch. Martz; J. L. Médale; H. Perrier; D. Romefort; J. Rouzaud; C. D'Uston; E. Möbius; K. Crocker; M. Granoff; L. M. Kistler; M. Popecki; D. Hovestadt; B. Klecker; Götz Paschmann; M. Scholer; C. W. Carlson; D. W. Curtis; Robert P. Lin; J. P. McFadden; V. Formisano; Ermanno Amata
The Cluster Ion Spectrometry (CIS) experiment is a comprehensive ionic plasma spectrometry package on-board the four Cluster spacecraft capable of obtaining full three-dimensional ion distributions with good time resolution (one spacecraft spin) with mass per charge composition determination. The requirements to cover the scientific objectives cannot be met with a single instrument. The CIS package therefore consists of two different instruments, a Hot Ion Analyser (HIA) and a time-of-flight ion COmposition and DIstribution Function analyser (CODIF), plus a sophisticated dual-processor-based instrument-control and Data-Processing System (DPS), which permits extensive on-board data-processing. Both analysers use symmetric optics resulting in continuous, uniform, and well-characterised phase space coverage. CODIF measures the distributions of the major ions (H+, He+, He++, and O+) with energies from ~0 to 40 keV/e with medium (22.5°) angular resolution and two different sensitivities. HIA does not offer mass resolution but, also having two different sensitivities, increases the dynamic range, and has an angular resolution capability (5.6° × 5.6°) adequate for ion-beam and solar-wind measurements.
Nature | 2007
Giuseppe Piccioni; P. Drossart; A. Sánchez-Lavega; R. Hueso; F. W. Taylor; Colin F. Wilson; D. Grassi; L. V. Zasova; Maria Luisa Moriconi; A. Adriani; Sebastien Lebonnois; Angioletta Coradini; B. Bezard; F. Angrilli; Gabriele Arnold; Kevin H. Baines; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; M. I. Blecka; Robert W. Carlson; A. M. Di Lellis; Th. Encrenaz; Stephane Erard; S. Fonti; V. Formisano; T. Fouchet; Raphael F. Garcia; Rainer Haus
Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright ‘dipole’ feature surrounded by a cold ‘collar’ at its north pole. The polar dipole is a ‘double-eye’ feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus’ south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.
Journal of Geophysical Research | 2008
L. Trenchi; M. F. Marcucci; G. Pallocchia; Giuseppe Consolini; M. B. Bavassano Cattaneo; A. M. Di Lellis; H. Rème; L. M. Kistler; C. M. Carr; Jintao Cao
We present a statistical study on reconnection occurrence at the dayside magnetopause performed using the Double Star TC1 plasma and magnetic field data. We examined the magnetopause crossings that occurred during the first year of the mission in the 0600 1800 LT interval and we identified plasma flows, at the magnetopause or in the boundary layer, with a different velocity with respect to the adjacent magnetosheath. We used the Walen relation to test which of these flows could be generated by magnetic reconnection. For some event we observed opposite-directed reconnection jets, which could be associated with the passage of the X-line near the satellite. We analyzed the occurrence of the reconnection jets and reconnection jet reversals in relation to the magnetosheath parameters, in particular the local Alfven Mach number, the plasma beta, and the magnetic shear angle. We also studied the positions and velocities of the reconnection jets and jet reversals in relation to the magnetosheath magnetic field clock angle. We found that the observations indicate the presence of a reconnection line hinged near the subsolar point and tilted according to the observed magnetosheath clock angle, consistently with the component merging model.
Nature | 2007
P. Drossart; Giuseppe Piccioni; J.-C. Gérard; Miguel Angel Lopez-Valverde; A. Sánchez-Lavega; L. V. Zasova; R. Hueso; F. W. Taylor; B. Bezard; A. Adriani; F. Angrilli; Gabriele Arnold; Kevin H. Baines; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; M. I. Blecka; Robert W. Carlson; Angioletta Coradini; A. M. Di Lellis; Th. Encrenaz; Stephane Erard; S. Fonti; V. Formisano; T. Fouchet; Raphael F. Garcia; Rainer Haus; J. Helbert; Nikolay Ignatiev
The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90–120 km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2 and NO have established that photochemical and dynamic activity controls the structure of the upper atmosphere of Venus. These data, however, have left unresolved the precise altitude of the emission owing to a lack of data and of an adequate observing geometry. Here we report measurements of day-side CO2 non-local thermodynamic equilibrium emission at 4.3 µm, extending from 90 to 120 km altitude, and of night-side O2 emission extending from 95 to 100 km. The CO2 emission peak occurs at ∼115 km and varies with solar zenith angle over a range of ∼10 km. This confirms previous modelling, and permits the beginning of a systematic study of the variability of the emission. The O2 peak emission happens at 96 km ± 1 km, which is consistent with three-body recombination of oxygen atoms transported from the day side by a global thermospheric sub-solar to anti-solar circulation, as previously predicted.
Journal of Geophysical Research | 2004
M. F. Marcucci; M. B. Bavassano Cattaneo; G. Pallocchia; E. Amata; R. Bruno; A. M. Di Lellis; V. Formisano; H. Rème; J. M. Bosqued; I. Dandouras; J.-A. Sauvaud; L. M. Kistler; E. Moebius; B. Klecker; C. W. Carlson; George K. Parks; Michael P. McCarthy; A. Korth; R. Lundin; A. Balogh
[1] We present Cluster observations made during an outbound orbit on 10 December 2000. After exiting the magnetosphere at midlatitude, Cluster spent a long time skimming the magnetopause moving to lower latitude along an orbit approximately in the ZY GSM plane on the dusk flank of the magnetopause. During this time, magnetospheric oxygen with energy >10 keV was observed continuously both in the magnetosphere and in the magnetosheath by the Cluster Ion Spectrometry (CIS) plasma experiment. While the oxygen density is roughly constant in the magnetosheath throughout the event, its velocity shows a strong dependence on the magnetosheath magnetic field orientation: low speeds, corresponding to almost isotropic distribution functions, occur for northward magnetic field, and high speeds, corresponding to beam-like distribution function occur for southward magnetic field. Mainly, two different processes have been discussed to explain the energetic particles escaping from the magnetosphere: flow along reconnected magnetospheric and magnetosheath field lines or crossing of the magnetopause when the particle gyroradii are comparable with the magnetopause thickness. The presence of the oxygen population cannot be readily explained in the framework of the reconnection theory. Instead, the observations are successfully reproduced by a model based on magnetopause crossing by finite gyroradius, provided the magnetosheath convection is taken into account together with the magnetosheath magnetic field orientation. Moreover, the presence of quasi-periodic motion of the magnetopause surface with period of approximately 5 min are evidenced by the analysis.
Geophysical Research Letters | 2002
C. G. Mouikis; L. M. Kistler; W. Baumjohann; E. J. Lund; A. Korth; B. Klecker; E. Möbius; Mark Andrew Popecki; J.-A. Sauvaud; H. Rème; A. M. Di Lellis; Michael P. McCarthy; C. W. Carlson
gyrofrequency (Pc1 frequency range). These events wereobserved during quiet magnetospheric conditions at the inner edgeof the plasmasheet. At this boundary 10 to 40 keV protons, whichconvect on open drift paths, exhibit a pronounced pitch angleanisotropy providing the free energy for the enhancement of thePc1 emissions. I
Advances in Space Research | 1997
V. Formisano; V.I. Moroz; F. Angrilli; G. Bianchini; E. Bussoletti; N. Cafaro; F. Capaccioni; M. T. Capria; P. Cerroni; G. Chionchio; L. Colangeli; Angioletta Coradini; A. M. Di Lellis; S. Fonti; R. Orfei; E. Palomba; Giuseppe Piccioni; Bortolino Saggin; A. Ekonomov; A. Grigorlev; V. Gnedykh; I. Khatuntsev; A. Kiselev; I.A. Matsygorin; B. Moshkin; V. Nechaev; Yu.V. Nikolsky; D. Patsaev; A. Russakov; D.V. Titov
The Planetary Fourier Spectrometer PFS has been designed for the study of the atmosphere and soil of Mars. PFS has two infrared channels: a long wavelength (LW) channel with range 250 - 2000 cm-’ and a short wavelength (SW) channel with range 2000 - 8333 cm-‘. The spectral resolution is 2 cm-‘. Both channels work simultaneously. The field of view is 2” which covers 10 km on the Martian surface being observed from the pericenter at 300 km. The signal to noise ratio is better than 100 in a range of particular scientific interest (at 650 cm-’ , for example). The built-in pointing device allows to study the atmosphere over extreme regions like Hellas Planitia or Olympus Mons.
Advances in Space Research | 2001
Angioletta Coradini; G. Piccioni; Stefania Amici; R. Bianchi; F. Capaccioni; M. T. Capria; M.C. De Sanctis; A. M. Di Lellis; S. Espinasse; C. Federico; S. Fonti; Gabriele Arnold; Sushil K. Atreya; Tobias Owen; M. I. Blecka; A. Bini; M. Cosi; S. Pieri; M. Tacconi
Abstract The Italian drill “DEEDRI” is going to be the lander based sample acquisition system for the Mars Surveyor Program of the Mars Sample Return mission. DEEDRI is capable to collect core/sand sample of the martian soil down to 50 cm in depth. The MA_MISS experiment belongs to the DEEDRI system and it will be dedicated to observe the wall of the excavated hole in terms of infrared spectral reflectance in the range 0.8–2.8 μm. The spectral sampling is about 20 nm while the spatial sampling is 100 μm over the target. The optical window of MA_MISS is placed very close to the drill tip so that the target view to be observed can span from the soil down to 50 cm. The proximity optics and electronics of MA_MISS have to be very miniaturized since they will be collocated inside the drill tool in a very limited volume of about 25 mm in diameter. On the other side the main electronics will be on the lander and it will communicate through an interface based on slip rings devices. MA_MISS can acquire in different observation modes. The images are scanned by moving the DEEDRI itself. One image ring is built up by acquiring contiguous images of the MA_MISS slit. The study of the Martian subsurface will provide important constraints on the nature, timing and duration of alteration and sedimentation processes on Mars, as well as on the complex interactions between the surface and the atmosphere. This study will permit to infer the history of erosion, transport and deposition of loose material. Alteration processes can dominate the mineralogy of the Martian surface: it will be essential to study the mineralogy of deeper layers, where a more limited alteration took place. MA_MISS can provide very important scientific return from the subsurface of Mars along with a selection criteria for the samples collection.
Journal of Geophysical Research | 2000
M. F. Marcucci; M. B. Bavassano Cattaneo; A. M. Di Lellis; P. Cerulli Irelli; L. M. Kistler; T. D. Phan; G. Haerendel; B. Klecker; G. Paschmann; W. Baumjohann; E. Möbius; Mark Andrew Popecki; J.-A. Sauvaud; H. Rème; A. Korth; L. Eliasson; C. W. Carlson; Michael P. McCarthy; George K. Parks
We report evidence of a long-lasting reconnection event during which the accelerated plasma flow direction changes in response to an interplanetary magnetic field (IMF) By reversal, indicating a change in the reconnection site location. The observations were made by Equator-S on the dawn flank of the magnetopause and consist of a large number of plasma jets detected mostly within magnetospheric flux transfer events. The plasma jets were found in quantitative agreement with the theoretical predictions for reconnection. The reversal of the plasma flow direction in the jets following the reversal of the By component not only confirms that the dayside reconnection configuration is controlled by the IMF, as opposed to local control, but also stresses the importance of the IMF dawn-dusk component, in addition to the north–south component, in determining the global configuration of the reconnection.
arXiv: Instrumentation and Detectors | 2009
S. Orsini; A. M. Di Lellis; Anna Milillo; E. De Angelis; A. Mura; Stefano Selci; I. Dandouras; P. Cerulli-Irelli; R. Leoni; Valeria Mangano; Stefano Massetti; F. Mattioli; R. Orfei; C. Austin; J. L. Médale; Nello Vertolli; D. Di Giulio
The neutral sensor ELENA (Emitted Low‐Energy Neutral Atoms) for the ESA cornerstone BepiColombo mission to Mercury (in the SERENA instrument package) is a new kind of low energetic neutral atoms instrument, mostly devoted to sputtering emission from planetary surfaces, from E∼20 eV up to E∼5 keV, within 1‐D (2°×76°). ELENA is a Time‐of‐Flight (TOF) system, based on oscillating shutter (operated at frequencies up to a 100 kHz) and mechanical gratings: the incoming neutral particles directly impinge upon the entrance with a definite timing (START) and arrive to a STOP detector after a flight path. After a brief dissertation on the achievable scientific objectives, this paper describes the instrument, with the new design techniques approached for the neutral particles identification and the nano‐techniques used for designing and manufacturing the nano‐structure shuttering core of the ELENA sensor. The expected count‐rates, based on the Hermean environment features, are shortly presented and discussed. Such d...