Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. M. Piersimoni is active.

Publication


Featured researches published by A. M. Piersimoni.


Astronomy and Astrophysics | 2009

On the metallicity gradient of the Galactic disk

S. Pedicelli; G. Bono; B. Lemasle; P. Francois; Martin A. T. Groenewegen; J. Lub; J. W. Pel; D. Laney; A. M. Piersimoni; M. Romaniello; R. Buonanno; F. Caputo; Santi Cassisi; F. Castelli; S. Leurini; A. Pietrinferni; F. Primas; J. Pritchard

Aims. The iron abundance gradient in the Galactic stellar disk provides fundamental constraints on the chemical evolution of this important Galaxy component, however the spread around the mean slope is, at fixed Galactocentric distance, more than the estimated uncertainties. Methods. To provide quantitative constraints on these trends, we adopted iron abundances for 265 classical Cepheids (more than 50% of the currently known sample) based either on high-resolution spectra or on photometric metallicity indices. Homogeneous distances were estimated using near-infrared period-luminosity relations. The sample covers the four disk quadrants, and their Galactocentric distances range from similar to 5 to similar to 17 kpc. We provided a new theoretical calibration of the metallicity-index-color (MIC) relation based on Walraven and NIR photometric passbands. Results. We estimated the photometric metallicity of 124 Cepheids. Among them 66 Cepheids also have spectroscopic iron abundances and we found that the mean difference is -0.03 +/- 0.15 dex. We also provide new iron abundances, based on high-resolution spectra, for four metal-rich Cepheids located in the inner disk. The remaining iron abundances are based on high-resolution spectra collected by our group (73) or available in the literature (130). A linear regression over the entire sample provides an iron gradient of -0.051 +/- 0.004 dex kpc(-1). The above slope agrees quite well, within the errors, with previous estimates based either on Cepheids or on open clusters covering similar Galactocentric distances. However, Cepheids located in the inner disk systematically appear more metal-rich than the mean metallicity gradient. Once we split the sample into inner (R(G) <8 kpc) and outer disk Cepheids, the slope (-0.130 +/- 0.015 dex kpc(-1)) in the former region is approximate to 3 times steeper than the slope in the latter one (-0.042 +/- 0.004 dex kpc(-1)). In the outer disk the radial distribution of metal-poor (MP, [Fe/H] <-0.02 dex) and metal-rich (MR) Cepheids across the four disk quadrants does not show a clear trend when moving from the innermost to the external disk regions. The relative fractions of MP and MR Cepheids in the 1st and in the 3rd quadrants differ at the 8 sigma (MP) and 15 sigma (MR) levels. Finally, we found that iron abundances in two local overdensities of the 2nd and of the 4th quadrant cover individually a range in iron abundance of approximate to 0.5 dex. Conclusions. Current findings indicate that the recent chemical enrichment across the Galactic disk shows a clumpy distribution.


The Astrophysical Journal | 2006

A Pulsational Distance to ω Centauri Based on Near-Infrared Period-Luminosity Relations of RR Lyrae Stars*

M. Del Principe; A. M. Piersimoni; Jesper Storm; F. Caputo; G. Bono; P. B. Stetson; M. Castellani; R. Buonanno; A. Calamida; C. E. Corsi; M. Dall’Ora; I. Ferraro; L. M. Freyhammer; G. Iannicola; M. Monelli; M. Nonino; L. Pulone; V. Ripepi

We present new near-infrared (J and K) magnitudes for 114 RR Lyrae stars in the globular cluster ω Centauri (NGC 5139), which we combine with data from the literature to construct a sample of 180 RR Lyrae stars with J and K mean magnitudes on a common photometric system. This is currently the largest such sample in any stellar system. We also present updated predictions for J- and K-band period-luminosity relations for both fundamental and first-overtone RR Lyrae stars, based on synthetic horizontal branch models with metal abundance ranging from Z = 0.0001 to 0.004. By adopting for the ω Cen variables with measured metal abundances an α-element enhancement of a factor of 3 (≈0.5 dex) with respect to iron, we find a true distance modulus μ0 = 13.70 ± 0.06 ± 0.06 (random and systematic errors, respectively), corresponding to a distance d = 5.5 ± 0.03 ± 0.03 kpc. Our estimate is in excellent agreement with the distance inferred for the eclipsing binary OGLEGC 17, but differ significantly from the recent distance estimates based on cluster dynamics and on high-amplitude δ Scuti stars.


Astronomy and Astrophysics | 2008

Galactic abundance gradients from Cepheids - On the iron abundance gradient around 10–12 kpc

B. Lemasle; P. Francois; A. M. Piersimoni; S. Pedicelli; G. Bono; C. D. Laney; F. Primas; M. Romaniello

Context. Classical Cepheids are excellent tracers of intermediate-mass stars, since their distances can be estimated with very high accuracy. In particular, they can be adopted to trace the chemical evolution of the Galactic disk. Aims. Homogeneous iron abundance measurements for 33 Galactic Cepheids located in the outer disk together with accurate distance determinations based on near-infrared photometry are adopted to constrain the Galactic iron gradient beyond 10 kpc. Methods. Iron abundances were determined using high resolution Cepheid spectra collected with three different observational instruments: ESPaDOnS@CFHT, Narval@TBL and [email protected] ESO/MPG telescope. Cepheid distances were estimated using nearinfrared (J,H,K-band) period-luminosity relations and data from SAAO and the 2MASS catalog. Results. The least squares solution over the entire data set indicates that the iron gradient in the Galactic disk presents a slope of –0.052 ± 0.003 dex kpc −1 in the 5–17 kpc range. However, the change of the iron abundance across the disk seems to be better described by a linear regime inside the solar circle and a flattening of the gradient toward the outer disk (beyond 10 kpc). In the latter region the iron gradient presents a shallower slope, i.e. –0.012 ± 0.014 dex kpc −1 . In the outer disk (10–12 kpc) we also found that Cepheids present an increase in the spread in iron abundance. Current evidence indicates that the spread in metallicity depends on the Galactocentric longitude. Finally, current data do not support the hypothesis of a discontinuity in the iron gradient at Galactocentric distances of 10–12 kpc. Conclusions. The occurrence of a spread in iron abundance as a function of the Galactocentric longitude indicates that linear radial gradients should be cautiously treated to constrain the chemical evolution across the disk.


The Astrophysical Journal | 2010

ON A NEW NEAR-INFRARED METHOD TO ESTIMATE THE ABSOLUTE AGES OF STAR CLUSTERS: NGC 3201 AS A FIRST TEST CASE*

G. Bono; P. B. Stetson; Don A. Vandenberg; A. Calamida; M. Dall'Ora; G. Iannicola; P. Amico; A. Di Cecco; E. Marchetti; M. Monelli; N. Sanna; A. R. Walker; M. Zoccali; R. Buonanno; F. Caputo; C. E. Corsi; S. Degl'Innocenti; S. D'Odorico; I. Ferraro; Roberto Gilmozzi; J. Melnick; M. Nonino; Sergio Ortolani; A. M. Piersimoni; P. G. Prada Moroni; L. Pulone; M. Romaniello; Jesper Storm

We present a new method to estimate the absolute ages of stellar systems. This method is based on the difference in magnitude between the main-sequence turnoff (MSTO) and a well-defined knee located along the lower main sequence (MSK). This feature is caused by the collisionally induced absorption of molecular hydrogen, and it can easily be identified in near-infrared (NIR) and in optical-NIR color-magnitude diagrams of stellar systems. We took advantage of deep and accurate NIR images collected with the Multi-Conjugate Adaptive Optics Demonstrator temporarily available on the Very Large Telescope and of optical images collected with the Advanced Camera for Surveys Wide Field Camera on the Hubble Space Telescope and with ground-based telescopes to estimate the absolute age of the globular NGC 3201 using both the MSTO and the ?(MSTO-MSK). We have adopted a new set of cluster isochrones, and we found that the absolute ages based on the two methods agree to within 1?. However, the errors of the ages based on the ?(MSTO-MSK) method are potentially more than a factor of 2 smaller, since they are not affected by uncertainties in cluster distance or reddening. Current isochrones appear to predict slightly bluer (0.05 mag) NIR and optical-NIR colors than observed for magnitudes fainter than the MSK.


The Astrophysical Journal | 2009

STROMGREN PHOTOMETRY OF GALACTIC GLOBULAR CLUSTERS. II. METALLICITY DISTRIBUTION OF RED GIANTS IN ω CENTAURI

A. Calamida; G. Bono; P. B. Stetson; L. M. Freyhammer; A. M. Piersimoni; Roberto Buonanno; F. Caputo; Santi Cassisi; M. Castellani; C. E. Corsi; M. Dall’Ora; S. Degl’Innocenti; I. Ferraro; F. Grundahl; Michael Hilker; G. Iannicola; M. Monelli; M. Nonino; N. Patat; A. Pietrinferni; P. G. Prada Moroni; F. Primas; L. Pulone; Tom Richtler; M. Romaniello; Jesper Storm; A. R. Walker

We present new intermediate-band Str?mgren photometry based on more than 300 u, v, b, y images of the Galactic globular cluster ? Cen. Optical data were supplemented with new multiband near-infrared (NIR) photometry (350 J, H, Ks images). The final optical-NIR catalog covers a region of more than 20 ? 20 arcmin squared across the cluster center. We use different optical-NIR color-color planes together with proper-motion data available in the literature to identify candidate cluster red-giant (RG) stars. By adopting different Str?mgren metallicity indices, we estimate the photometric metallicity for 4000 RGs, the largest sample ever collected. The metallicity distributions show multiple peaks ([Fe/H]phot = ?1.73 ? 0.08, ?1.29 ? 0.03, ?1.05 ? 0.02, ?0.80 ? 0.04, ?0.42 ? 0.12, and ?0.07 ? 0.08 dex) and a sharp cutoff in the metal-poor (MP) tail ([Fe/H]phot ?2 dex) that agree quite well with spectroscopic measurements. We identify four distinct subpopulations, namely, MP ([Fe/H] ? ?1.49), metal-intermediate (MI; ?1.49 < [Fe/H] ? ?0.93), metal-rich (MR; ?0.95 < [Fe/H] ? ?0.15), and solar metallicity ([Fe/H] 0). The last group includes only a small fraction of stars (~8% ? 5%) and should be confirmed spectroscopically. Moreover, using the difference in metallicity based on different photometric indices, we find that the 19% ? 1% of RGs are candidate CN-strong stars. This fraction agrees quite well with recent spectroscopic estimates and could imply a large fraction of binary stars. The Str?mgren metallicity indices display a robust correlation with ?-elements ([Ca+Si/H]) when moving from the MI to the MR regime ([Fe/H] ?1.7 dex).


The Astrophysical Journal | 2007

Star counts in the globular cluster ω centauri. I. Bright stellar components

V. Castellani; A. Calamida; G. Bono; P. B. Stetson; L. M. Freyhammer; S. Degl’Innocenti; P. G. Prada Moroni; M. Monelli; C. E. Corsi; M. Nonino; R. Buonanno; F. Caputo; M. Castellani; M. Dall’Ora; M. Del Principe; I. Ferraro; G. Iannicola; A. M. Piersimoni; L. Pulone; C. Vuerli

We present a photometric investigation on HB, RGB, and MSTO stars in ω Cen=NGC 5139. The center of the cluster was covered with a mosaic of F435W, F625W, and F658N band data collected with HST ACS. The outer reaches were covered with a mosaic of U-, B-, V-, and I-band data collected with the 2.2 m ESO/MPI telescope. The final catalog includes ~1.7 million stars. We identified more than 3200 likely HB stars, the largest sample ever collected in a globular cluster. We found that the HB morphology changes with the radial distance from the cluster center. The relative number of extreme HB stars decreases from ~30% to ~21% when moving from the center toward the outer reaches of the cluster, while the fraction of less hot HB stars increases from ~62% to ~72%. The comparison between theory and observations indicates that the empirical star counts of HB stars are on average larger (30%-40%) than predicted by canonical evolutionary models. Moreover, the rate of HB stars is ~43% larger than the MSTO rate. We also compared theory and observations by assuming a mix of stellar populations made with 70% of canonical He (Y = 0.23) stars and 30% of He-enhanced (Y = 0.33, 0.42) stars. We found that the observed RG/MSTO ratio agrees with the predicted lifetimes of He-mixed stellar populations. The discrepancy between theory and observations decreases by a factor of 2 when compared with rates predicted by canonical He content models, but still 15%-25% (Y = 0.42) and 15%-20% (Y = 0.33) higher than observed. Furthermore, the ratios between HB and MSTO star counts are ~24% (Y = 0.42) and 30% (Y = 0.33) larger than predicted lifetime ratios.


Astronomy and Astrophysics | 2017

Gaia Data Release 1 - The photometric data

F. van Leeuwen; D. W. Evans; F. De Angeli; C. Jordi; G. Busso; Carla Cacciari; M. Riello; E. Pancino; Giuseppe Altavilla; A. G. A. Brown; P. Burgess; J. M. Carrasco; G. Cocozza; S. Cowell; M. Davidson; F. De Luise; C. Fabricius; S. Galleti; G. Gilmore; G. Giuffrida; Nigel Hambly; D. Harrison; Simon T. Hodgkin; G. Holland; I. Macdonald; S. Marinoni; P. Montegriffo; P. Osborne; S. Ragaini; P. J. Richards

Context. This paper presents an overview of the photometric data that are part of the first Gaia data release. Aims. The principles of the processing and the main characteristics of the Gaia photometric data are presented. Methods. The calibration strategy is outlined briefly and the main properties of the resulting photometry are presented. Results. Relations with other broadband photometric systems are provided. The overall precision for the Gaia photometry is shown to be at the milli-magnitude level and has a clear potential to improve further in future releases.


The Astrophysical Journal | 2010

On the Delta V_HB_bump parameter in Globular Clusters

A. Di Cecco; I. Ferraro; A. R. Walker; C. E. Corsi; S. Degl'Innocenti; M. Dall'Ora; A. Calamida; A. M. Piersimoni; A. Pietrinferni; F. Caputo; M. Romaniello; G. Iannicola; S. Cassisi; P. G. Prada Moroni; R. Buonanno; R. Becucci; M. Castellani; L. Pulone; M. Zoccali; P. B. Stetson; Maurizio Salaris; G. Bono; M. Nonino; M. Monelli

We present new empirical estimates of the DELTAV {sup bump}{sub HB} parameter for 15 Galactic globular clusters (GGCs) using accurate and homogeneous ground-based optical data. Together with similar evaluations available in the literature, we ended up with a sample of 62 GGCs covering a very broad range in metal content (-2.16 dex = 0), might be systematically smaller than predicted.


The Astrophysical Journal | 2005

Reddening Distribution across the Center of the Globular Cluster ω Centauri

A. Calamida; P. B. Stetson; G. Bono; L. M. Freyhammer; F. Grundahl; M. Hilker; M. I. Andersen; R. Buonanno; S. Cassisi; C. E. Corsi; M. Dall'Ora; M. Del Principe; I. Ferraro; M. Monelli; A. Munteanu; M. Nonino; A. M. Piersimoni; A. Pietrinferni; L. Pulone; Tom Richtler

We present new medium-band uvby Stromgren and broadband VI photometry for the central regions of the globular cluster ω Cen. From this photometry we have obtained differential reddening estimates relative to two other globular clusters (M13 and NGC 288) using a metallicity-independent, reddening-free temperature index, [c] ≡ (u-v) - (v-b) - 0.2(b-y), for hot horizontal-branch (HB) stars (Teff ≥ 8500 K). We estimate color excesses of these hot HB stars using optical and near-infrared colors, and we find clumpy extinction variations of almost a factor of 2 within the area of the cluster core. In particular, the greatest density of more highly reddened objects appears to be shifted along the right ascension axis when compared with less reddened ones. These findings complicate photometric efforts to investigate the star formation history of ω Cen.


The Astrophysical Journal | 2008

On the Relative Distances of ω Centauri and 47 Tucanae

G. Bono; P. B. Stetson; N. Sanna; A. M. Piersimoni; L. M. Freyhammer; Y. Bouzid; R. Buonanno; A. Calamida; F. Caputo; C. E. Corsi; A. Di Cecco; M. Dall'Ora; I. Ferraro; G. Iannicola; M. Monelli; M. Nonino; L. Pulone; C. Sterken; J. Storm; T. Tuvikene; A. R. Walker

We present precise optical and near-infrared ground-based photometry of two globular clusters (GCs): ? Cen and 47 Tuc. These photometric catalogs are unbiased in the red giant branch (RGB) region close to the tip. We provide new estimates of the RGB tip (TRGB) magnitudes? -->mI(TRGB) = 9.84 ? 0.05, ? Cen; -->mI(TRGB) = 9.46 ? 0.06, 47 Tuc?and use these to determine the relative distances of the two GCs. We find that distance ratios based on different calibrations of the TRGB, the RR Lyrae stars, and kinematic distances agree with each other within 1 ?. Absolute TRGB and RR Lyrae distance moduli agree within 0.10-0.15 mag, while absolute kinematic distance moduli are 0.2-0.3 mag smaller. Absolute distances to 47 Tuc based on the zero-age horizontal branch and on the white dwarf fitting agree within 0.1 mag, but they are 0.1-0.3 mag smaller than TRGB and RR Lyrae distances.

Collaboration


Dive into the A. M. Piersimoni's collaboration.

Researchain Logo
Decentralizing Knowledge