Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Mazurenko is active.

Publication


Featured researches published by A. Mazurenko.


Journal of Nuclear Materials | 1997

Experimental investigation of transport phenomena in the scrape-off layer and divertor

B. LaBombard; Jennifer Ann Goetz; Ian H. Hutchinson; D. Jablonski; J. Kesner; C. Kurz; B. Lipschultz; G. McCracken; A. Niemczewski; J. L. Terry; A. J. Allen; R. L. Boivin; F. Bombarda; P.T. Bonoli; C. Christensen; C. Fiore; D. Garnier; S. Golovato; R. Granetz; M. Greenwald; S. Horne; A. Hubbard; James H. Irby; D. Lo; D. Lumma; E. Marmar; M. May; A. Mazurenko; R. Nachtrieb; H. Ohkawa

Abstract Transport physics in the divertor and scrape-off layer of Alcator C-Mod is investigated for a wide range of plasma conditions. Parallel (∥) transport topics include: low recycling, high-recycling, and detached regimes, thermoelectric currents, asymmetric heat fluxes driven by thermoelectric currents, and reversed divertor flows. Perpendicular (⊥) transport topics include: expected and measured scalings of ⊥ gradients with local conditions, estimated χ⊥ profiles and scalings, divertor neutral retention effects, and L-mode/H-mode effects. Key results are: (i) classical ∥ transport is obeyed with ion-neutral momentum coupling effects, (ii) ⊥ heat transport is proportional to local gradients, (iii) χ⊥ αTe−0.6 n−0.6 L−0.7 in L-mode, insensitive to toroidal field, (iv) χ⊥ is dependent on divertor neutral retention, (v) H-mode transport barrier effects partially extend inside the SOL, (vi) inside/outside divertor asymmetries may be caused by a thermoelectric instability, and (vii) reversed ∥ flows depend on divertor asymmetries and their implicit ionization source imbalances.


Physics of Plasmas | 1999

Characterization of enhanced Dα high-confinement modes in Alcator C-Mod

M. Greenwald; R. L. Boivin; P.T. Bonoli; R. Budny; C. Fiore; Jennifer Ann Goetz; R. Granetz; A. Hubbard; Ian H. Hutchinson; James H. Irby; B. LaBombard; Y. Lin; B. Lipschultz; E. Marmar; A. Mazurenko; D. A. Mossessian; T. Sunn Pedersen; C. S. Pitcher; M. Porkolab; J. E. Rice; W. Rowan; J. A. Snipes; G. Schilling; Y. Takase; J. L. Terry; Scot A. Wolfe; J. Weaver; B. Welch; Stephen James Wukitch

Regimes of high-confinement mode have been studied in the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994)]. Plasmas with no edge localized modes (ELM-free) have been compared in detail to a new regime, enhanced Dα (EDA). EDA discharges have only slightly lower energy confinement than comparable ELM-free ones, but show markedly reduced impurity confinement. Thus EDA discharges do not accumulate impurities and typically have a lower fraction of radiated power. The edge gradients in EDA seem to be relaxed by a continuous process rather than an intermittent one as is the case for standard ELMy discharges and thus do not present the first wall with large periodic heat loads. This process is probably related to fluctuations seen in the plasma edge. EDA plasmas are more likely at low plasma current (q>3.7), for moderate plasma shaping, (triangularity ∼0.35–0.55), and for high neutral pressures. As observed in soft x-ray emission, the pedestal width is found to scale with the same parameters that determine the EDA/ELM-free boundary.


Physics of Plasmas | 2001

Pedestal profiles and fluctuations in C-Mod enhanced D-alpha H-modes

A. Hubbard; R. L. Boivin; R. Granetz; M. Greenwald; J.W. Hughes; Ian H. Hutchinson; J. Irby; B. LaBombard; Y. Lin; E. Marmar; A. Mazurenko; D. A. Mossessian; E. Nelson-Melby; M. Porkolab; J. A. Snipes; J. L. Terry; S. M. Wolfe; S.J. Wukitch; B. A. Carreras; V. Klein; T. Sunn Pedersen

High resolution measurements on the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1551 (1994)] of the transport barrier in the “Enhanced Dα” (EDA) regime, which has increased particle transport without large edge localized modes, show steep density and temperature gradients over a region of 2–5 mm, with peak pressure gradients up to 12 MPa/m. Evolution of the pedestal at the L-H transition is consistent with a large, rapid drop in thermal conductivity across the barrier. A quasi-coherent fluctuation in density, potential, and Bpol, with f0∼50–150 kHz and kθ∼4 cm−1, always appears in the barrier during EDA, and drives a large particle flux. Conditions to access the steady-state EDA regime in deuterium include δ>0.35, q95>3.5, and L-mode target density ne>1.2×1020 m−3. A reduced q95 limit is found for hydrogen discharges.


Plasma Physics and Controlled Fusion | 2001

The quasi-coherent signature of enhanced Dα H-mode in Alcator C-Mod

J. A. Snipes; B. LaBombard; M. Greenwald; Ian H. Hutchinson; J. Irby; Y. Lin; A. Mazurenko; M. Porkolab

The steady-state H-mode regime found at moderate to high density in Alcator C-Mod, known as enhanced Dα (EDA) H-mode, appears to be maintained by a continuous quasi-coherent (QC) mode in the steep edge gradient region. Large amplitude density and magnetic fluctuations with typical frequencies of about 100 kHz are driven by the QC mode. These fluctuations are measured in the steep edge gradient region by inserting a fast-scanning probe containing two poloidally separated Langmuir probes and a poloidal field pick-up coil. As the probe approaches the plasma edge, clear magnetic fluctuations were measured within about 2 cm of the last-closed flux surface (LCFS). The mode amplitude falls off rapidly with distance from the plasma centre with an exponential decay length of kr≈1.5 cm-1, measured 10 cm above the outboard midplane. The root-mean-square amplitude of the fluctuation extrapolated to the LCFS was θ≈5 G. The density fluctuations, on the other hand, were visible on the Langmuir probe only when it was within a few millimetres of the LCFS. The potential and density fluctuations were sufficiently in phase to enhance particle transport at the QC mode frequency. These results show that the QC signature of the EDA H-mode is an electromagnetic mode that appears to be responsible for the enhanced particle transport in the plasma edge.


Physics of Plasmas | 1997

Radiofrequency-heated enhanced confinement modes in the Alcator C-Mod tokamak

Y. Takase; R. L. Boivin; F. Bombarda; P.T. Bonoli; C. Christensen; C. Fiore; D. Garnier; Jennifer Ann Goetz; S. Golovato; R. Granetz; M. Greenwald; S. Horne; A. Hubbard; Ian H. Hutchinson; James H. Irby; B. LaBombard; B. Lipschultz; E. Marmar; M. May; A. Mazurenko; G. McCracken; P. O’Shea; M. Porkolab; James Christian Reardon; J. E. Rice; C. Rost; J. Schachter; J. A. Snipes; P. Stek; J. L. Terry

Enhanced confinement modes up to a toroidal field of BT=8 T have been studied with up to 3.5 MW of radiofrequency (rf) heating power in the ion cyclotron range of frequencies (ICRF) at 80 MHz. H-mode is observed when the edge temperature exceeds a threshold value. The high confinement mode (H-mode) with higher confinement enhancement factors (H) and longer duration became possible after boronization by reducing the radiated power from the main plasma. A quasi-steady state with high confinement (H=2.0), high normalized beta (βN=1.5), low radiated power fraction (Pradmain/Ploss=0.3), and low effective charge (Zeff=1.5) has been obtained in Enhanced Dα H-mode. This type of H-mode has enhanced levels of continuous Dα emission and very little or no edge localized mode (ELM) activity, and reduced core particle confinement time relative to ELM-free H-mode. The pellet enhanced performance (PEP) mode is obtained by combining core fueling with pellet injection and core heating. A highly peaked pressure profile with...


Physics of Plasmas | 1996

Comparison of detached and radiative divertor operation in Alcator C-Mod

J.A. Goetz; C. Kurz; B. LaBombard; B. Lipschultz; A. Niemczewski; G. McCracken; J. L. Terry; R. L. Boivin; F. Bombarda; P.T. Bonoli; C. Fiore; S. Golovato; R. Granetz; M. Greenwald; S. Horne; A. Hubbard; Ian H. Hutchinson; J. Irby; E. Marmar; M. Porkolab; J. E. Rice; J. A. Snipes; Y. Takase; R. Watterson; B. Welch; S. M. Wolfe; C. Christensen; D. Garnier; D. Jablonski; D. Lo

The divertor of the Alcator C‐Mod tokamak [Phys. Plasmas 1, 1511 (1994)] routinely radiates a large fraction of the power entering the scrape‐off layer. This dissipative divertor operation occurs whether the divertor is detached or not, and large volumetric radiative emissivities, up to 60 MW m−3 in ion cyclotron range of frequency (ICRF) heated discharges, have been measured using bolometer arrays. An analysis of both Ohmic and ICRF‐heated discharges has demonstrated some of the relative merits of detached divertor operation versus high‐recycling divertor operation. An advantage of detached divertor operation is that the power flux to the divertor plates is decreased even further than its already low value. Some disadvantages are that volumetric losses outside the separatrix in the divertor region are decreased, the neutral compression ratio is decreased, and the penetration efficiency of impurities increases.


Plasma Physics and Controlled Fusion | 2002

H-mode pedestal characteristics and MHD stability of the edge plasma in Alcator C-Mod

D. A. Mossessian; Philip B. Snyder; M. Greenwald; J.W. Hughes; Y. Lin; A. Mazurenko; S Medvedev; H. R. Wilson; Scot A. Wolfe

Under most operational conditions of Alcator C-Mod, the dominant type of H-mode is the steady state enhanced Dα (EDA) mode, characterized by good energy confinement, continuously degraded impurity confinement and absence of regular edge localized modes (ELMs). In this regime, a quasicoherent (QC) electromagnetic mode (kθ~5 cm-1, f~100 kHz) is observed, localized in the region of the density pedestal. Experimental evidence suggests that the mode is responsible for enhancement of particle transport. It is shown experimentally that the QC mode can exist in a well defined region in edge temperature-safety factor space, favouring high edge q values (q95≥3.5) and requiring moderate pedestal temperature Teped ≤ Tc (Tc~400 eV). As edge temperature and pressure gradient increase, the QC mode is replaced by broadband low frequency fluctuations (f<50 kHz). Small grassy ELMs are observed in these discharges. Analysis of ideal ballooning stability of the C-Mod edge shows that the edge pressure gradient is not limited by infinite n ideal ballooning mode if edge bootstrap current, even reduced by high edge collisionality, is taken into account. Linear stability analysis of coupled ideal peeling/ballooning medium n modes, driven by combination of edge pressure and current gradients, shows that the modes become marginally unstable at C-Mod edge in the range of pressure gradients where the grassy ELMs are observed (∇P≥1.2×107 Pa Wb-1 rad). This result is consistent with a model of the ELMs as intermediate n peeling/ballooning modes. On the other hand, demonstrated stability of the ideal modes in EDA regime, together with the fact that low Teped is required for its existence, supports theoretical models showing resistive character of the QC mode.


Physics of Plasmas | 2014

20 years of research on the Alcator C-Mod tokamak

M. Greenwald; A. Bader; S. G. Baek; M. Bakhtiari; Harold Barnard; W. Beck; W. Bergerson; I.O. Bespamyatnov; P.T. Bonoli; D. L. Brower; D. Brunner; W. Burke; J. Candy; M. Churchill; I. Cziegler; A. Diallo; A. Dominguez; B.P. Duval; E. Edlund; P. Ennever; D. Ernst; I. Faust; C. Fiore; T. Fredian; O.E. Garcia; C. Gao; J.A. Goetz; T. Golfinopoulos; R. Granetz; O. Grulke

The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-modes performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.


Physics of Plasmas | 1997

Electron heating via mode converted ion Bernstein waves in the Alcator C-Mod tokamak

P.T. Bonoli; P. O’Shea; M. Brambilla; S. Golovato; A. Hubbard; M. Porkolab; Y. Takase; R. L. Boivin; F. Bombarda; C. Christensen; C. Fiore; D. Garnier; J.A. Goetz; R. Granetz; M. Greenwald; S. Horne; Ian H. Hutchinson; J. Irby; D. Jablonski; B. LaBombard; B. Lipschultz; E. Marmar; M. May; A. Mazurenko; G. McCracken; R. Nachtrieb; A. Niemczewski; H. Ohkawa; D. Pappas; James Christian Reardon

Highly localized direct electron heating [full width at half-maximum (FWHM)≅0.2a] via mode converted ion Bernstein waves has been observed in the Alcator C-Mod Tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)]. Electron heating at or near the plasma center (r/a⩾0.3) has been observed in H(3He) discharges at B0=(6.0–6.5) T and ne(0)≅1.8×1020 m−3. [Here, the minority ion species is indicated parenthetically.] Off-axis heating (r/a⩾0.5) has also been observed in D(3He) plasmas at B0=7.9 T. The concentration of 3He in these experiments was in the range of n3He/ne≅(0.2–0.3) and the locations of the mode conversion layer and electron heating peak could be controlled by changing the 3He concentration or toroidal magnetic field (B0). The electron heating profiles were deduced using a rf modulation technique. Detailed comparisons with one-dimensional and toroidal full-wave models in the ion cyclotron range of frequencies have been carried out. One-dimensional full-wave code predictions were found to ...


Physics of Plasmas | 2000

Mode conversion electron heating in Alcator C-Mod: Theory and experiment

P.T. Bonoli; M. Brambilla; E. Nelson-Melby; C. K. Phillips; M. Porkolab; G. Schilling; G. Taylor; S.J. Wukitch; R. L. Boivin; C. J. Boswell; C. Fiore; S. Gangadhara; Jennifer Ann Goetz; R. Granetz; M. Greenwald; A. Hubbard; Ian H. Hutchinson; Yujun Y In; James H. Irby; B. LaBombard; B. Lipschultz; E. Marmar; A. Mazurenko; R. Nachtrieb; D. Pappas; C. S. Pitcher; James Christian Reardon; J. E. Rice; W. Rowan; J. A. Snipes

Localized electron heating [full width at half maximum of Δ(r/a)≈0.2] by mode converted ion Bernstein waves (IBW) has been observed in the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)]. These experiments were performed in D(3He) plasmas at high magnetic field (B0=7.9 T), high-plasma density (ne0⩾1.5×1020 m−3), and for 0.05⩽nHe-3/ne⩽0.30. Electron heating profiles of the mode converted IBW were measured using a break in slope analysis of the electron temperature versus time in the presence of rf (radio frequency) modulation. The peak position of electron heating was found to be well-correlated with 3He concentration, in agreement with the predictions of cold plasma theory. Recently, a toroidal full-wave ion cyclotron range of frequencies (ICRF) code TORIC [M. Brambilla, Nucl. Fusion 38, 1805 (1998)] was modified to include the effects of IBW electron Landau damping at (k⊥ρi)2≫1, This model was used in combination with a 1D (one-dimensional) integral wave equation code METS [...

Collaboration


Dive into the A. Mazurenko's collaboration.

Top Co-Authors

Avatar

A. Hubbard

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

E. Marmar

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Greenwald

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ian H. Hutchinson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. L. Boivin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

E. Nelson-Melby

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Miklos Porkolab

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

C. Fiore

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. E. Rice

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Porkolab

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge