A. Mazzulla
University of Calabria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Mazzulla.
Applied Physics Letters | 2003
Andro Chanishvili; Guram Chilaya; Gia Petriashvili; Riccardo Barberi; Roberto Bartolino; G. Cipparrone; A. Mazzulla; Luis Oriol
In this letter, we report the results of phototunable lasing in dye-doped cholesteric liquid crystals (DD–CLC). Photoexcitation of DD–CLC films gives rise to laser emission in the violet-UV range. Control of the structure of the chiral dopant driven by UV phototransformation is exploited in order to obtain a permanent variation of the cholesteric pitch. Laser emission wavelength tuning, by means of photoinduced shifting of the selective reflection band of the cholesteric liquid crystals is established. A tuning interval of about 35 nm, in the wavelength range of 385–415 nm, is observed.
Applied Physics Letters | 2005
Andro Chanishvili; Guram Chilaya; Gia Petriashvili; Riccardo Barberi; Roberto Bartolino; G. Cipparrone; A. Mazzulla; Raquel Giménez; Luis Oriol; Milagros Piñol
Quasicontinuous tuning of a dye doped cholesteric liquid crystal (CLC) mirrorless laser in the ultraviolet-visible wavelength range is demonstrated using a single original device based on CLC as resonator and several resonant dyes. The thought is to combine the CLC pitch gradient and the distribution of different dyes. In the same cell, six dyes are combined in order to nearly cover the whole wavelength range from ultraviolet (370 nm) to red (680 nm). Some of the used dyes work as emitter, while others work in the Forster regime to decouple the excitation and emission processes. The relevant aspect of the device is that a simple translation of the cell respect to the same pump beam enables fine tuning of the laser wavelength in almost all the visible range, up to the ultraviolet.
Advanced Materials | 2011
G. Cipparrone; A. Mazzulla; Alfredo Pane; Raul Josue Hernandez; Roberto Bartolino
Solid chiral microspheres with unique and multifunctional optical properties are produced from cholesteric liquid crystal-water emulsions using photopolymerization processes. These self-organizing microspheres exhibit different internal configurations of helicoidal structures with radial, conical or cylindrical geometries, depending on the physicochemical characteristics of the precursor liquid crystal emulsion.
Applied Physics Letters | 2000
G. Cipparrone; A. Mazzulla; S. P. Palto; S. G. Yudin; L. M. Blinov
An investigation was carried out on thin permanent phase polarization gratings recorded in Langmuir–Blodgett films using two orthogonal circularly polarized Ar-ion laser beams. The films are composed of amphiphilic azo-dye molecules and manifest an extremely large value of photoinduced optical anisotropy, Δn≈0.36. The experimental results are in excellent accord with the theoretical model based on the Jones matrix representation of the polarization pattern. The gratings are stable at least, for half a year.
Chemical Physics | 1999
F. Simoni; G. Cipparrone; A. Mazzulla; P. Pagliusi
Abstract We report a detailed investigation of the photorefractive origin of permanent orientational gratings recorded by holographic technique in dye-doped polymer-dispersed liquid crystal (PDLC) films. This investigation was performed using wave-mixing characterization by two beam coupling (TBC) experiments. We determined the TBC gain by means of asymmetric energy transfer measurements and the phase shift by TBC translation technique measurements. The photorefractive origin of the effect were proved by the experimental results. Nevertheless, some peculiarities showed the presence of other mechanisms that combined with the photorefractivity to give the observed storage effect. The long time stability and some characteristic of the recorded structure have been explained as a thermal fixing of the grating. During the writing process, due to the strong light absorption, the sample was locally heated; under these conditions, the space charge field effect can modify the droplets interfaces and consequently the orientation of liquid crystal inside the droplets. After removing the two writing beams, the new configuration was frozen.
Optics Letters | 1998
G. Cipparrone; A. Mazzulla; F. Simoni
We report the observation of orientational gratings induced by the photorefractive effect in dye-doped polymer-dispersed liquid crystals. The photorefractive origin of the grating-induction effect is supported by the results of two-beam coupling experiments and by the possibility of erasing the grating by uniform illumination. For all the samples a stable memory effect was observed.
Applied Physics Letters | 2001
G. Cipparrone; A. Mazzulla; G. Russo
We report an observation of holographic gratings recorded exposing a homogeneous mixture of pre-polymer and liquid crystal to a polarization light pattern. This polarization pattern is obtained by a superposition of two waves with orthogonal linear polarization. The idea to use this technique to realize holographic gratings come from the possibility of controlling the liquid crystal alignment inside the droplets, through the photoalignment, during the photoinduced polymerization process. On the contrary, the usual methods of writing diffraction gratings in polymer-dispersed liquid crystals are based on intensity holographic technique that controls the polymerization process. Diffraction gratings, composed of liquid crystal droplets having a particular internal alignment, are observed.
Journal of The Optical Society of America B-optical Physics | 2002
G. Cipparrone; A. Mazzulla; L. M. Blinov
The study of a diffractive device for polarimetric applications is reported. The device consists of a diffraction grating recorded by two interfering opposite circularly polarized beams and is based on a Langmuir–Blodgett film of an azo-compound material. This material provides long-time stability and high photoinduced birefringence that makes the grating highly diffraction efficient. We show how polarization gratings permanently stored in these films are suitable for applications as photopolarimeter components.
Nature Communications | 2014
M. G. Donato; J. Hernandez; A. Mazzulla; C. Provenzano; Rosalba Saija; R. Sayed; S. Vasi; Alessandro Magazzù; P. Pagliusi; Roberto Bartolino; Pietro G. Gucciardi; Onofrio M. Maragò; G. Cipparrone
Chirality is one of the most prominent and intriguing aspects of nature, from spiral galaxies down to aminoacids. Despite the wide range of living and non-living, natural and artificial chiral systems at different scales, the origin of chirality-induced phenomena is often puzzling. Here we assess the onset of chiral optomechanics, exploiting the control of the interaction between chiral entities. We perform an experimental and theoretical investigation of the simultaneous optical trapping and rotation of spherulite-like chiral microparticles. Due to their shell structure (Bragg dielectric resonator), the microparticles function as omnidirectional chiral mirrors yielding highly polarization-dependent optomechanical effects. The coupling of linear and angular momentum, mediated by the optical polarization and the microparticles chiral reflectance, allows for fine tuning of chirality-induced optical forces and torques. This offers tools for optomechanics, optical sorting and sensing and optofluidics.
Applied Optics | 2006
C. Provenzano; G. Cipparrone; A. Mazzulla
A photopolarimeter based on two different kinds of diffraction gratings (a two-grating photopolarimeter) has been developed for real-time measurements of the four elements of the Stokes vector. The main elements of the device are a pure polarization grating and an ordinary transmission grating, both recorded by means of holographic techniques in thin films of organic materials. The first one consists of a diffraction grating recorded by two interfering opposite circularly polarized beams in a Langmuir-Blodgett film of an azo-compound material. The second component is a grating recorded by two interfering parallel circularly polarized beams in a thin film of a photosensitive polymer. Both gratings offer long time stability and good diffraction efficiency. Four photodiodes collect the first-order diffracted beams from these gratings, the output signals of which are read through an analog-to-digital converter by a PC. The optical alignment of the device is easy and the calibration is realized in a one-step procedure.