Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Morselli is active.

Publication


Featured researches published by A. Morselli.


Astroparticle Physics | 2007

PAMELA - A Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics

P. Picozza; Guido Castellini; O. Adriani; F. Altamura; M. Ambriola; A. Basili; R. Bencardino; M. Boezio; L. Bonechi; M. Bongi; L. Bongiorno; V. Bonvicini; F. Cafagna; D. Campana; P. Carlson; M. Casolino; G. De Rosa; D. Fedele; P. Hofverberg; J. Lund; J. Lundquist; O. Maksumov; V. Malvezzi; L. Marcelli; W. Menn; M. Minori; S. Misin; E. Mocchiutti; A. Morselli; G. Osteria

PAMELA is a satellite-borne experiment designed for precision studies of the charged cosmic radiation. The primary scientific goal is the study of the antimatter component of the cosmic radiation (antiprotons, 80 MeV - 190 GeV; and positrons, 50 MeV - 270 GeV) in order to search for evidence of dark matter particle annihilations. PAMELA will also search for primordial antinuclei (in particular, anti-helium), and test cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and studies of light nuclei and their isotopes. Concomitant goals include a study of solar physics and solar modulation during the 24th solar minimum by investigating low energy particles in the cosmic radiation; and a reconstruction of the cosmic ray electron energy spectrum up to several TeV thereby allowing a possible contribution from local sources to be studied. PAMELA is housed on-board the Russian Resurs-DKl satellite, which was launched on June 15th 2006 in an elliptical (350-600 km altitude) orbit with an inclination of 70 degrees. PAMELA consists of a permanent magnet spectrometer, to provide rigidity and charge sign information; a Time-of-Flight and trigger system, for velocity and charge determination; a silicon-tungsten calorimeter, for lepton/hadron discrimination; and a neutron detector. An anticoincidence system is used offline to reject false triggers. In this article the PAMELA experiment and its status are reviewed. A preliminary discussion of data recorded in-orbit is also presented.


The Astrophysical Journal | 2000

The cosmic-ray electron and positron spectra measured at 1 Au during solar minimum activity

M. Boezio; Per Carlson; Tom Francke; N. Weber; M. Suffert; M. Hof; W. Menn; Michael Simon; S. A. Stephens; R. Bellotti; F. Cafagna; M. Castellano; M. Circella; C. De Marzo; N. Finetti; P. Papini; S. Piccardi; P. Spillantini; Mario V. Ricci; M. Casolino; M. P. De Pascale; A. Morselli; Piergiorgio Picozza; Roberta Sparvoli; G. Barbiellini; Ulisse Bravar; Paolo Schiavon; Andrea Vacchi; N. Zampa; C. Grimani

We report on a new measurement of the cosmic-ray electron and positron spectra. The data were collected by the balloon-borne experiment CAPRICE94, which was —own from Lynn Lake, Canada, on 1994 August 8¨9 at an altitude corresponding to 3.9 g cm~2 of average residual atmosphere. The experi- ment used the NMSU-WIZARD/CAPRICE94 balloon-borne magnet spectrometer equipped with a solid radiator Ring Imaging Cerenkov (RICH) detector, a time-of-—ight system, a tracking device consisting of drift chambers and multiwire proportional chambers, and a silicon-tungsten calorimeter. This was the —rst time a RICH detector was used together with an imaging calorimeter in a balloon-borne experi- ment. A total of 3211 electrons, with a rigidity at the spectrometer between 0.3 and 30 GV, and 734 positrons, between 0.3 and 10 GV, were identi—ed with small backgrounds from other particles. The absolute energy spectra were determined in the energy region at the top of the atmosphere between 0.46 and 43.6 GeV for electrons and between 0.46 and 14.6 GeV for positrons. We found that the observed positron spectrum and the positron fraction are consistent with a pure secondary origin. A comparison of the theoretically predicted interstellar spectrum of electrons shows that the injection spectrum of primary electrons is steeper than that of the nucleonic components of cosmic rays. Furthermore, the observed electron and positron spectra can be reproduced from the interstellar spectra by a spherically symmetric model for solar modulation; hence, the modulation is independent of the sign of the particle charge. Subject headings: balloonscosmic rayselementary particlesSun: activity


The Astrophysical Journal | 1999

THE COSMIC-RAY PROTON AND HELIUM SPECTRA BETWEEN 0.4 AND 200 GV

M. Boezio; Per Carlson; Tom Francke; N. Weber; M. Suffert; M. Hof; W. Menn; M. Simon; S. A. Stephens; R. Bellotti; F. Cafagna; M. Castellano; M. Circella; C. De Marzo; N. Finetti; P. Papini; S. Piccardi; P. Spillantini; Mario V. Ricci; M. Casolino; M. P. De Pascale; A. Morselli; Piergiorgio Picozza; Roberta Sparvoli; G. Barbiellini; Ulisse Bravar; Paolo Schiavon; Andrea Vacchi; N. Zampa; J. W. Mitchell

We report on the hydrogen nuclei (protons and deuterons) spectrum from 0.15 to 200 GeV and on the helium nuclei spectrum over the energy range from 0.2 to 100 GeV nucleon~1 at the top of the atmo- sphere measured by the balloon-borne experiment Cosmic Antiparticle Ring-Imaging Cerenkov Experi- ment (CAPRICE), which was —own from Lynn Lake, Manitoba, Canada, on 1994 August 8¨9. We also report on the proton spectrum over the energy range from 0.15 to 4.2 GeV. The experiment used the NMSU-WiZard/CAPRICE balloon-borne magnet spectrometer equipped with a solid radiator Ring- Imaging Cerenkov (RICH) detector and a silicon-tungsten calorimeter for particle identi—cation. This was the —rst time a RICH was used together with an imaging calorimeter in a balloon-borne experiment. These detectors allowed for clear particle identi—cation, as well as excellent control of the detector effi- ciencies. The data were collected during 18 hr at a residual mean atmospheric depth of 3.9 g cm~2. With this apparatus 516,463 hydrogen and 32,457 helium nuclei were identi—ed in the rigidity range 0.4 to 200 GV and 1.2 to 200 GV, respectively. The observed energy spectrum at the top of the atmosphere can be represented by (1.1 ^ 0.1) ) 104 E~2.73B0.06 particles (m2 GeV sr s)~1 for hydrogen (E in GeV) between 20 and 200 GeV and (4.3 ^ 0.9) ) 102 E~2.65B0.07 particles (m2 GeV nucleon~1 sr s)~1 for helium nuclei (E in GeV nucleon~1) between 10 and 100 GeV nucleon~1. These spectra are in good agreement with other recent measurements above 10 GeV. The observed spectra —atten below 10 GeV due to solar modulation and are consistent with earlier measurements when solar modulation is taken into account. Between 5 and 200 GV the hydrogen to helium ratio as a function of rigidity was found to be approx- imately constant at 6.1 ^ 0.1. Subject headings: cosmic rayselementary particles


Journal of Geophysical Research | 2010

Detection of terrestrial gamma ray flashes up to 40 MeV by the AGILE satellite

M. Marisaldi; Fabio Fuschino; Claudio Labanti; M. Galli; F. Longo; Ettore Del Monte; G. Barbiellini; A. Giuliani; E. Moretti; S. Vercellone; Enrico Costa; S. Cutini; I. Donnarumma; M. Feroci; Igor Y. Lapshov; F. Lazzarotto; P. Lipari; S. Mereghetti; Luigi Pacciani; Massimo Rapisarda; Paolo Soffitta; Massimo Trifoglio; A. Argan; F. Boffelli; A. Bulgarelli; P. A. Caraveo; Paolo Walter Cattaneo; Andrew W. Chen; V. Cocco; Filippo D'Ammando

We report the detection by the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite of terrestrial gamma ray flashes (TGFs) obtained with the minicalorimeter (MCAL) detector operating in the ...


Journal of Cosmology and Astroparticle Physics | 2008

Pre-launch estimates for GLAST sensitivity to dark matter annihilation signals

Edward A. Baltz; Bijan Berenji; Gianfranco Bertone; Lars Bergström; E. Bloom; Torsten Bringmann; J. Chiang; Johann Cohen-Tanugi; J. Conrad; Y. Edmonds; Joakim Edsjö; G. Godfrey; R. E. Hughes; R. P. Johnson; Andrea Lionetto; A. Moiseev; A. Morselli; I. V. Moskalenko; Eric Nuss; J. F. Ormes; R. Rando; A. Sander; A. Sellerholm; P. D. Smith; Andrew W. Strong; L. Wai; P. Wang; B. L. Winer

We investigate the sensitivity of the Gamma-ray Large Area Space Telescope (GLAST) for indirectly detecting weakly interacting massive particles (WIMPs) through the γ-ray signal that their pair ann ...


The Astrophysical Journal | 2001

The Cosmic-Ray Antiproton Flux between 3 and 49 GeV

M. Boezio; V. Bonvicini; P. Schiavon; A. Vacchi; N. Zampa; D. Bergström; P. Carlson; Tom Francke; S. Grinstein; M. Suffert; M. Hof; J. Kremer; W. Menn; M. Simon; S. A. Stephens; M. Ambriola; R. Bellotti; F. Cafagna; F. Ciacio; M. Circella; C. De Marzo; N. Finetti; P. Papini; S. Piccardi; P. Spillantini; E. Vannuccini; S. Bartalucci; M. Ricci; M. Casolino; M. P. De Pascale

We report on a new measurement of the cosmic ray antiproton spectrum. The data were collected by the balloon-borne experiment CAPRICE98 which was flown on 28-29 May 1998 from Fort Sumner, New Mexico, USA. The experiment used the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas Ring Imaging Cherenkov (RICH) detector, a time-of-flight system, a tracking device consisting of drift chambers and a superconducting magnet and a silicon-tungsten calorimeter. The RICH detector was the first ever flown capable of mass-resolving charge-one particles at energies above 5 GeV. A total of 31 antiprotons with rigidities between 4 and 50 GV at the spectrometer were identified with small backgrounds from other particles. The absolute antiproton energy spectrum was determined in the kinetic energy region at the top of the atmosphere between 3.2 and 49.1 GeV. We found that the observed antiproton spectrum and the antiproton-to-proton ratio are consistent with a pure secondary origin. However, a primary component may not be excluded.We report on a new measurement of the cosmic ray antiproton spectrum. The data were collected by the balloon-borne experiment CAPRICE98, which was —own on 1998 May 28¨29 from Fort Sumner, New Mexico. The experiment used the NMSU-WiZard/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas Ring Imaging Cherenkov (RICH) detector, a time-of-—ight system, a tracking device consisting of drift chambers and a superconducting magnet, and a silicon-tungsten calorimeter. The RICH detector was the —rst ever —own capable of mass-resolving charge-one particles at energies above 5 GeV. A total of 31 antiprotons with rigidities between 4 and 50 GV at the spectrometer were identi—ed with small backgrounds from other particles. The absolute antiproton energy spectrum was determined in the kinetic energy region at the top of the atmosphere between 3.2 and 49.1 GeV. We found that the observed antiproton spectrum and the antiproton-to-proton ratio are consistent with a pure secondary origin. However, a primary component may not be excluded.


Nature | 2009

Extreme particle acceleration in the microquasar Cygnus X-3

Marco Tavani; A. Bulgarelli; Giancarlo Piano; S. Sabatini; E. Striani; Alessio Trois; Guy G. Pooley; S. Trushkin; N. A. Nizhelskij; Michael L. McCollough; K. I. I. Koljonen; G. Pucella; A. Giuliani; Andrew W. Chen; Enrico Costa; V. Vittorini; Massimo Trifoglio; F. Gianotti; A. Argan; G. Barbiellini; P. A. Caraveo; Paolo Walter Cattaneo; V. Cocco; T. Contessi; F. D’Ammando; E. Del Monte; G. De Paris; G. Di Cocco; G. Di Persio; I. Donnarumma

Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated γ-ray emission. Galactic ‘microquasars’, which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnus X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four γ-ray flares with energies above 100 MeV from the microquasar Cygnus X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the γ-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnus X-3, particle energies during the flares can be thousands of times higher than during quiescent states.


Nature | 2009

Discovery of extreme particle acceleration in the microquasar Cygnus X-3

A. Bulgarelli; G. Piano; S. Sabatini; E. Striani; Alessio Trois; Guy G. Pooley; S. Trushkin; N. A. Nizhelskij; Michael L. McCollough; K. I. I. Koljonen; G. Pucella; A. Giuliani; Andrew W. Chen; E. Costa; V. Vittorini; Massimo Trifoglio; F. Gianotti; A. Argan; G. Barbiellini; P. A. Caraveo; Paolo Walter Cattaneo; V. Cocco; T. Contessi; F. D'Ammando; E. Del Monte; G. De Paris; G. Di Cocco; G. Di Persio; I. Donnarumma; M. Feroci

Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated γ-ray emission. Galactic ‘microquasars’, which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnus X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four γ-ray flares with energies above 100 MeV from the microquasar Cygnus X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the γ-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnus X-3, particle energies during the flares can be thousands of times higher than during quiescent states.


The Astrophysical Journal | 1997

The Cosmic-Ray Antiproton Flux between 0.62 and 3.19 GeV Measured Near Solar Minimum Activity

M. Boezio; Per Carlson; Tom Francke; N. Weber; M. Suffert; M. Hof; W. Menn; Michael Simon; S. A. Stephens; R. Bellotti; F. Cafagna; M. Castellano; M. Circella; G. de Cataldo; C. De Marzo; N. Giglietto; P. Spinelli; M. Bocciolini; P. Papini; A. Perego; S. Piccardi; P. Spillantini; G. Basini; Mario V. Ricci; A. Codino; N. Finetti; C. Grimani; M. Candusso; M. Casolino; M. P. De Pascale

We report on the absolute antiproton Nux and the antiproton to proton ratio in the energy range 0.62E3.19 GeV at the top of the atmosphere, measured by the balloon-borne experiment CAPRICE Nown from Lynn Lake, Manitoba, Canada, on 1994 August 8E9. The experiment used the New Mexico State University WiZard/CAPRICE balloon-borne magnet spectrometer equipped with a solid radiator Ring Imaging Cherenkov (RICH) detector and a silicon-tungsten calorimeter for particle identi-cation. This is the -rst time a RICH is used together with an imaging calorimeter in a balloon experiment, and it allows antiprotons to be clearly identi-ed over the rigidity range 1.2E4 GV. Nine antiprotons were identi-ed in the energy range 0.62E3.19 GeV at the top of the atmosphere. The data were collected over 18 hr at a mean residual atmosphere of 3.9 g cm~2. The absolute antiproton Nux is consistent with a pure secondary production of antiprotons during the propagation of cosmic rays in the Galaxy. Subject headings: balloons E cosmic rays E elementary particles E Sun: activity


The Astrophysical Journal | 1994

Observations of cosmic ray electrons and positrons using an imaging calorimeter

R. L. Golden; Giuseppe Basini; W. R. Webber; P. Picozza; A. Codino; R. E. Streitmatter; S. A. Stephens; M. Menichelli; P. Spillantini; A. Morselli; Eul Soo Seo; F. Massimo Brancaccio; C. Grimani; M. Ricci; P. Papini; M.T. Brunetti; M. P. De Pascale; B. Kimbell; F. Bongiorno; I. Salvatori; S.J. Stochaj; J. F. Ormes

A ballon-borne magnet spectrometer system was flown for 5.5 hr at an altitude of more than 117,00 feet from Prince Albert, Saskatchewan (Canada), on 1989 September 5, when the Newark neutron monitor rate was 2952. The instrument was a modified version of the one used to observe antiprotons in 1979. The most significant modification was the addition of an imaging calorimeter, 7.33 radiation lengths thick. Inclusion of the calorimeter has significantly improved the ability to distinguish electrons and positrons from the other constituents of the cosmic rays. The absolute electron flux has been determined in the energy interval 1.3-26 GeV. The electron spectrum at the top of the atmosphere was found to be J(sub e-) = 177E(exp -(3.15+/-0.13)) electrons/ sq m/(sr s GeV) in the energy range 4.0-26 GeV. Below 4 GeV, the spectrum showed flattening, which is consistent with the effect of solar modulation. The e(+)/(e(+)+e(-)) ratio was found to be (0.11 +/- 0.03) in the energy range 5.2-13 GeV.

Collaboration


Dive into the A. Morselli's collaboration.

Researchain Logo
Decentralizing Knowledge