A. Muntoni
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Muntoni.
Waste Management | 2013
G. De Gioannis; A. Muntoni; Alessandra Polettini; Raffaella Pomi
Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject.
Chemosphere | 2012
Giovanna Salvatorica Cappai; G. De Gioannis; A. Muntoni; Daniela Spiga; Jjp Zijlstra
A reactive barrier (RB) of transformed red mud (TRM), a by-product of the refinement of bauxite in alumina production, was placed adjacent to the anode of an electrokinetic (EK) system with the aim of enhancing removal of chromium or arsenic, added singly to a low permeability clayey soil, and favouring entrapment. The innovative study focused on evaluation of the synergic interaction between the EK system and the RB, and of the efficiency when compared to traditional EK remediation (control tests). The results obtained underlined the successful outcome of treatment of the Cr(VI)-contaminated soil. In presence of the TRM RB, 19.4% wt. of total Cr content was detected in the anolyte and 20.6% wt. trapped in the anodic RB after 6d, versus 6.6% wt. in the anolyte and 8.8% wt. in the soil adjacent to the anode following the control run without RB. On increasing duration of treatment up to 12d, 60.8% wt. of total initial Cr was found in the anolyte and 25.5% wt. trapped in the RB, versus 9.1% wt. and 5.3% wt., respectively, after a control run of the same duration. Finally, on increasing the mass of TRM in the RB, 60.6% wt. of initial Cr content was found to have accumulated in the RB, with Cr being completely absent from the anodic chamber. Conversely, combined treatment was much less effective on As contaminated soil, at least under the operative conditions applied. Low initial As concentration and interference with iron oxides in the soil were likely the reasons underlying low efficiency while attempting As decontamination.
Waste Management | 2017
Giorgia De Gioannis; A. Muntoni; Alessandra Polettini; Raffaella Pomi; Daniela Spiga
One- and two-stage anaerobic digestion of food waste aimed at recovering methane (CH4) and hydrogen and methane (H2+CH4), respectively, were compared in order to assess the potential benefits from the two-stage process in terms of overall energy recovery. Results suggest that a two-stage process where the first reactor is properly operated in order to achieve a significant net hydrogen production, may display a 20% comparatively higher energy recovery yield as a result, mainly, of enhanced methane production as well as of the associated hydrogen production. The highest methane production of the two-stage process was due to improved hydrolysis and fermentation of food waste, with increased amounts of volatile fatty acids being readily available to methanogenesis.
Waste Management | 2017
Carla Asquer; Giovanna Salvatorica Cappai; Giorgia De Gioannis; A. Muntoni; Martina Piredda; Daniela Spiga
In this work the effects of selected types of biomass ash on the composting process and final product quality were studied by conducting a 96-day long experiment where the source separated organic fraction of municipal waste, mixed with wood prunings that served as bulking agent, was added with 0%, 2%, 4% and 8% wt/wt of biomass ash. The evolution over time of the main process parameters was observed, and the final composts were characterised. On the basis of the results, both the composting process and the quality of the final product were improved by ash addition. Enhanced volatile solids reduction and biological stability (up to 32% and 52%, respectively, as compared to the unamended product) were attained when ash was added, since ash favored the aerobic degradation by acting asa physical conditioner. In the final products, higher humification of organic matter (expressed in terms of the humification index, that was 2.25 times higher in the most-enriched compost than in the unamended one) and total Ca, K, Mg and P content were observed when ash was used. The latter aspect may influence the composts marketability positively, particularly with regards to potassium and phosphorus. The heavy metals content, that is regarded as the main environmental disadvantage when using ash asa composting additive, did not negatively affect the final composts quality. However, some other controversial effects of ash, related to the moisture and temperature values attained during the process, pH (8.8-9.2 as compared to 8.2 of the unamended compost) and electrical conductivity levels (up to 53% higher as compared to the unamended compost) in the final composts, were also observed.
Desalination and Water Treatment | 2015
Stefano Milia; Marianna Perra; A. Muntoni; Alessandra Carucci
AbstractIn this study, a SHARON reactor was used to treat synthetic and real ammonium-rich refinery wastewater (sour water) with different inorganic carbon to nitrogen (Ci/N) molar ratios, in order to evaluate its possible implementation downstream of a steam stripping unit in a double-stage SHARON–ANAMMOX or SHARON–heterotrophic denitritation process. A synthetic influent containing -N (2,000 mg/L) was initially fed to promote biomass acclimation, and then real sour water containing also organic substrate, cyanides, sulphides and phenols was supplied. With both synthetic and real wastewater, the applied Ci/N molar ratio was progressively increased from 1 to 2 and the SHARON reactor produced an effluent suitable for further treatment by autotrophic ANAMMOX or heterotrophic denitritation, respectively. Acute toxicity assessments based on the specific measurement of nitritation activity confirmed that biomass acclimation to the toxic substances contained in the real wastewater occurred successfully. Moreove...
Bioresource Technology | 2017
M. Akhlaghi; Maria Rosaria Boni; Giorgia De Gioannis; A. Muntoni; Alessandra Polettini; Raffaella Pomi; A. Rossi; Daniela Spiga
Batch factorial experiments were performed on cheese whey+wastewater sludge mixtures to evaluate the influence of pH and the inoculum-to-substrate ratio (ISR) on fermentative H2 production and build a related predictive model. ISR and pH affected H2 potential and rate, and the fermentation pathways. The specific H2 yield varied from 61 (ISR=0, pH=7.0) to 371L H2/kg TOCwhey (ISR=1.44gVS/g TOC, pH=5.5). The process duration range was 5.3 (ISR=1.44gVS/g TOC, pH=7.5) - 183h (ISR=0, pH=5.5). The metabolic products included mainly acetate and butyrate followed by ethanol, while propionate was only observed once H2 production had significantly decreased. The multiple metabolic products suggested that the process was governed by several fermentation pathways, presumably overlapping and mutually competing, reducing the conversion yield into H2 compared to that expected with clostridial fermentation.
International Journal of Hydrogen Energy | 2014
G. De Gioannis; Marco Friargiu; E Massi; A. Muntoni; Alessandra Polettini; Raffaella Pomi; Daniela Spiga
11th International Waste Management and Landfill Symposium: Eleventh International Waste Management and Landfill Symposium | 2007
Alessandra Polettini; Thomas Fruergaard Astrup; Giovanna Salvatorica Cappai; P. Lechner; A. Muntoni; Raffaella Pomi; T. Van Gerven; A. van Zomeren
Archive | 2018
Alessandra Polettini; Thomas Fruergaard Astrup; Giovanna Salvatorica Cappai; A. Muntoni; Raffaella Pomi; T. Van Gerven; A. van Zomeren
Archive | 2017
Alessandra Polettini; Raffaella Pomi; A. Rossi; M. Akhlaghi; A. Muntoni; Daniela Spiga; nullDe Gioannis Nullg