Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Murat Maga is active.

Publication


Featured researches published by A. Murat Maga.


PLOS Genetics | 2011

Heterozygous mutations of FREM1 are associated with an increased risk of isolated metopic craniosynostosis in humans and mice

Lisenka E.L.M. Vissers; Timothy C. Cox; A. Murat Maga; Kieran M. Short; Fenny Wiradjaja; Irene M. Janssen; Fernanda Sarquis Jehee; Débora Romeo Bertola; Jia Liu; Garima Yagnik; Kiyotoshi Sekiguchi; Daiji Kiyozumi; Hans van Bokhoven; Carlo Marcelis; Michael L. Cunningham; Peter Anderson; Simeon A. Boyadjiev; Maria Rita Passos-Bueno; Joris A. Veltman; Ian Smyth; Michael F. Buckley; Tony Roscioli

The premature fusion of the paired frontal bones results in metopic craniosynostosis (MC) and gives rise to the clinical phenotype of trigonocephaly. Deletions of chromosome 9p22.3 are well described as a cause of MC with variably penetrant midface hypoplasia. In order to identify the gene responsible for the trigonocephaly component of the 9p22.3 syndrome, a cohort of 109 patients were assessed by high-resolution arrays and MLPA for copy number variations (CNVs) involving 9p22. Five CNVs involving FREM1, all of which were de novo variants, were identified by array-based analyses. The remaining 104 patients with MC were then subjected to targeted FREM1 gene re-sequencing, which identified 3 further mutant alleles, one of which was de novo. Consistent with a pathogenic role, mouse Frem1 mRNA and protein expression was demonstrated in the metopic suture as well as in the pericranium and dura mater. Micro-computed tomography based analyses of the mouse posterior frontal (PF) suture, the human metopic suture equivalent, revealed advanced fusion in all mice homozygous for either of two different Frem1 mutant alleles, while heterozygotes exhibited variably penetrant PF suture anomalies. Gene dosage-related penetrance of midfacial hypoplasia was also evident in the Frem1 mutants. These data suggest that CNVs and mutations involving FREM1 can be identified in a significant percentage of people with MC with or without midface hypoplasia. Furthermore, we present Frem1 mutant mice as the first bona fide mouse model of human metopic craniosynostosis and a new model for midfacial hypoplasia.


Journal of Medical Genetics | 2011

Manitoba-oculo-tricho-anal (MOTA) syndrome is caused by mutations in FREM1

Anne Slavotinek; Sergio E. Baranzini; Denny Schanze; Cassandre Labelle-Dumais; Kieran M. Short; Ryan Chao; Mani Yahyavi; Emilia K. Bijlsma; Catherine Chu; Stacey Musone; Ashleigh Wheatley; Pui-Yan Kwok; Sandra L. Marles; Jean Pierre Fryns; A. Murat Maga; Mohamed G. Hassan; Douglas B. Gould; Lohith Madireddy; Chumei Li; Timothy C. Cox; Ian Smyth; Albert E. Chudley; Martin Zenker

Background Manitoba-oculo-tricho-anal (MOTA) syndrome is a rare condition defined by eyelid colobomas, cryptophthalmos and anophthalmia/microphthalmia, an aberrant hairline, a bifid or broad nasal tip, and gastrointestinal anomalies such as omphalocele and anal stenosis. Autosomal recessive inheritance had been assumed because of consanguinity in the Oji-Cre population of Manitoba and reports of affected siblings, but no locus or cytogenetic aberration had previously been described. Methods and results This study shows that MOTA syndrome is caused by mutations in FREM1, a gene previously mutated in bifid nose, renal agenesis, and anorectal malformations (BNAR) syndrome. MOTA syndrome and BNAR syndrome can therefore be considered as part of a phenotypic spectrum that is similar to, but distinct from and less severe than, Fraser syndrome. Re-examination of Frem1bat/bat mutant mice found new evidence that Frem1 is involved in anal and craniofacial development, with anal prolapse, eyelid colobomas, telecanthus, a shortened snout and reduced philtral height present in the mutant mice, similar to the human phenotype in MOTA syndrome. Conclusions The milder phenotypes associated with FREM1 deficiency in humans (MOTA syndrome and BNAR syndrome) compared to that resulting from FRAS1 and FREM2 loss of function (Fraser syndrome) are also consistent with the less severe phenotypes resulting from Frem1 loss of function in mice. Together, Fraser, BNAR and MOTA syndromes constitute a clinically overlapping group of FRAS–FREM complex diseases.


Proceedings of the Royal Society of London B: Biological Sciences | 2010

A new mammal skull from the Lower Cretaceous of China with implications for the evolution of obtuse-angled molars and 'amphilestid' eutriconodonts.

Chun Ling Gao; Gregory P. Wilson; Zhe-Xi Luo; A. Murat Maga; Qingjin Meng; Xuri Wang

We report the discovery of Juchilestes liaoningensis, a new genus and species of eutriconodont mammal from the Lujiatun Site of the Lower Cretaceous Yixian Formation (123.2 ± 1.0 Ma; Lower Aptian). The holotype preserves a partial skull and full dentition. Among eutriconodonts, its lower dentition is similar to taxa formerly assigned to the paraphyletic group of ‘amphilestids’. Some have considered ‘amphilestid’ molars to represent the structural intermediate between the lower molars of the ‘triconodont’ pattern of cusps in alignment and the fully triangulate and more derived therian molars. However, ‘amphilestid’ taxa were previously represented only by the lower dentition. Our study reveals, for the first time, the upper dentition and skull structure of an ‘amphilestid’, and shows that at least some eutriconodonts have an obtuse-angled cusp pattern on molars in middle positions of the long molar series. Its petrosal is similar to those of other eutriconodonts and spalacotheroid ‘symmetrodonts’. Our phylogenetic analyses suggest that (i) Juchilestes is most closely related to the Early Cretaceous Hakusanodon from Japan, in the same Eastern Asiatic geographic region; (ii) ‘amphilestids’ are not monophyletic; and (iii) eutriconodonts might not be a monophyletic group, although this hypothesis must be further tested.


Frontiers in Physiology | 2015

Quantitative trait loci affecting the 3D skull shape and size in mouse and prioritization of candidate genes in-silico

A. Murat Maga; Nicolas Navarro; Michael L. Cunningham; Timothy C. Cox

We describe the first application of high-resolution 3D micro-computed tomography, together with 3D landmarks and geometric morphometrics, to map QTL responsible for variation in skull shape and size using a backcross between C57BL/6J and A/J inbred strains. Using 433 animals, 53 3D landmarks, and 882 SNPs from autosomes, we identified seven QTL responsible for the skull size (SCS.qtl) and 30 QTL responsible for the skull shape (SSH.qtl). Size, sex, and direction-of-cross were all significant factors and included in the analysis as covariates. All autosomes harbored at least one SSH.qtl, sometimes up to three. Effect sizes of SSH.qtl appeared to be small, rarely exceeding 1% of the overall shape variation. However, they account for significant amount of variation in some specific directions of the shape space. Many QTL have stronger effect on the neurocranium than expected from a random vector that will parcellate uniformly across the four cranial regions. On the contrary, most of QTL have an effect on the palate weaker than expected. Combined interval length of 30 SSH.qtl was about 315 MB and contained 2476 known protein coding genes. We used a bioinformatics approach to filter these candidate genes and identified 16 high-priority candidates that are likely to play a role in the craniofacial development and disorders. Thus, coupling the QTL mapping approach in model organisms with candidate gene enrichment approaches appears to be a feasible way to identify high-priority candidates genes related to the structure or tissue of interest.


American Journal of Human Genetics | 2016

Mutations in CRADD Result in Reduced Caspase-2-Mediated Neuronal Apoptosis and Cause Megalencephaly with a Rare Lissencephaly Variant

Nataliya Di Donato; Ying Y. Jean; A. Murat Maga; Briana D. Krewson; Alison B. Shupp; Maria I. Avrutsky; Achira Roy; Sarah Collins; Carissa Olds; Rebecca A. Willert; Agnieszka M. Czaja; Rachel Johnson; Jessi A. Stover; Steven M. Gottlieb; Deborah Bartholdi; Anita Rauch; Amy Goldstein; Victoria Boyd-Kyle; Kimberly A. Aldinger; Ghayda M. Mirzaa; Anke Nissen; Karlla W. Brigatti; Erik G. Puffenberger; Kathleen J. Millen; Kevin A. Strauss; William B. Dobyns; Carol M. Troy; Robert N. Jinks

Lissencephaly is a malformation of cortical development typically caused by deficient neuronal migration resulting in cortical thickening and reduced gyration. Here we describe a “thin” lissencephaly (TLIS) variant characterized by megalencephaly, frontal predominant pachygyria, intellectual disability, and seizures. Trio-based whole-exome sequencing and targeted re-sequencing identified recessive mutations of CRADD in six individuals with TLIS from four unrelated families of diverse ethnic backgrounds. CRADD (also known as RAIDD) is a death-domain-containing adaptor protein that oligomerizes with PIDD and caspase-2 to initiate apoptosis. TLIS variants cluster in the CRADD death domain, a platform for interaction with other death-domain-containing proteins including PIDD. Although caspase-2 is expressed in the developing mammalian brain, little is known about its role in cortical development. CRADD/caspase-2 signaling is implicated in neurotrophic factor withdrawal- and amyloid-β-induced dendritic spine collapse and neuronal apoptosis, suggesting a role in cortical sculpting and plasticity. TLIS-associated CRADD variants do not disrupt interactions with caspase-2 or PIDD in co-immunoprecipitation assays, but still abolish CRADD’s ability to activate caspase-2, resulting in reduced neuronal apoptosis in vitro. Homozygous Cradd knockout mice display megalencephaly and seizures without obvious defects in cortical lamination, supporting a role for CRADD/caspase-2 signaling in mammalian brain development. Megalencephaly and lissencephaly associated with defective programmed cell death from loss of CRADD function in humans implicate reduced apoptosis as an important pathophysiological mechanism of cortical malformation. Our data suggest that CRADD/caspase-2 signaling is critical for normal gyration of the developing human neocortex and for normal cognitive ability.


PLOS ONE | 2015

A Novel Procedure for Rapid Imaging of Adult Mouse Brains with MicroCT Using Iodine-Based Contrast.

Ryan D. Anderson; A. Murat Maga

High-resolution Magnetic Resonance Imaging (MRI) has been the primary modality for obtaining 3D cross-sectional anatomical information in animals for soft tissue, particularly brain. However, costs associated with MRI can be considerably high for large phenotypic screens for gross differences in the structure of the brain due to pathology and/or experimental manipulations. MicroCT (mCT), especially benchtop mCT, is becoming a common laboratory equipment with throughput rates equal or faster than any form of high-resolution MRI at lower costs. Here we explore adapting previously developed contrast based mCT to image adult mouse brains in-situ. We show that 2% weight per volume (w/v) iodine-potassium iodide solution can be successfully used to image adult mouse brains within 48 hours post-mortem when a structural support matrix is used. We demonstrate that hydrogel can be effectively used as a perfusant which limits the tissue shrinkage due to iodine.


G3: Genes, Genomes, Genetics | 2016

Does 3D Phenotyping Yield Substantial Insights in the Genetics of the Mouse Mandible Shape

Nicolas Navarro; A. Murat Maga

We describe the application of high-resolution 3D microcomputed tomography, together with 3D landmarks and geometric morphometrics, to validate and further improve previous quantitative genetic studies that reported QTL responsible for variation in the mandible shape of laboratory mice using a new backcross between C57BL/6J and A/J inbred strains. Despite the increasing availability of 3D imaging techniques, artificial flattening of the mandible by 2D imaging techniques seems at first an acceptable compromise for large-scale phenotyping protocols, thanks to an abundance of low-cost digital imaging systems such as microscopes or digital cameras. We evaluated the gain of information from considering explicitly this additional third dimension, and also from capturing variation on the bone surface where no precise anatomical landmark can be marked. Multivariate QTL mapping conducted with different landmark configurations (2D vs. 3D; manual vs. semilandmarks) broadly agreed with the findings of previous studies. Significantly more QTL (23) were identified and more precisely mapped when the mandible shape was captured with a large set of semilandmarks coupled with manual landmarks. It appears that finer phenotypic characterization of the mandibular shape with 3D landmarks, along with higher density genotyping, yields better insights into the genetic architecture of mandibular development. Most of the main variation is, nonetheless, preferentially embedded in the natural 2D plane of the hemi-mandible, reinforcing the results of earlier influential investigations.


Frontiers in Zoology | 2015

Performance of single and multi-atlas based automated landmarking methods compared to expert annotations in volumetric microCT datasets of mouse mandibles.

Ryan Young; A. Murat Maga

BackgroundHere we present an application of advanced registration and atlas building framework DRAMMS to the automated annotation of mouse mandibles through a series of tests using single and multi-atlas segmentation paradigms and compare the outcomes to the current gold standard, manual annotation.ResultsOur results showed multi-atlas annotation procedure yields landmark precisions within the human observer error range. The mean shape estimates from gold standard and multi-atlas annotation procedure were statistically indistinguishable for both Euclidean Distance Matrix Analysis (mean form matrix) and Generalized Procrustes Analysis (Goodall F-test). Further research needs to be done to validate the consistency of variance-covariance matrix estimates from both methods with larger sample sizes.ConclusionMulti-atlas annotation procedure shows promise as a framework to facilitate truly high-throughput phenomic analyses by channeling investigators efforts to annotate only a small portion of their datasets.


PLOS ONE | 2017

Skeleton of an unusual cat-sized marsupial relative (Metatheria: Marsupialiformes) from the middle Eocene (Lutetian: 44-43 million years ago) of Turkey

A. Murat Maga; Robin M. D. Beck

We describe a near-complete, three-dimensionally preserved skeleton of a metatherian (relative of modern marsupials) from the middle Eocene (Lutetian: 44–43 million years ago) Lülük member of the Uzunçarşıdere Formation, central Turkey. With an estimated body mass of 3–4 kg, about the size of a domestic cat (Felis catus) or spotted quoll (Dasyurus maculatus), it is an order of magnitude larger than the largest fossil metatherians previously known from the Cenozoic of the northern hemisphere. This new taxon is characterised by large, broad third premolars that probably represent adaptations for hard object feeding (durophagy), and its craniodental morphology suggests the capacity to generate high bite forces. Qualitative and quantitative functional analyses of its postcranial skeleton indicate that it was probably scansorial and relatively agile, perhaps broadly similar in locomotor mode to the spotted quoll, but with a greater capacity for climbing and grasping. Bayesian phylogenetic analysis of a total evidence dataset comprising 259 morphological characters and 9kb of DNA sequence data from five nuclear protein-coding genes, using both undated and “tip-and-node dating” approaches, place the new taxon outside the marsupial crown-clade, but within the clade Marsupialiformes. It demonstrates that at least one metatherian lineage evolved to occupy the small-medium, meso- or hypo-carnivore niche in the northern hemisphere during the early Cenozoic, at a time when there were numerous eutherians (placentals and their fossil relatives) filling similar niches. However, the known mammal fauna from Uzunçarşıdere Formation appears highly endemic, and geological evidence suggests that this region of Turkey was an island for at least part of the early Cenozoic, and so the new taxon may have evolved in isolation from potential eutherian competitors. Nevertheless, the new taxon reveals previously unsuspected ecomorphological disparity among northern hemisphere metatherians during the first half of the Cenozoic.


Journal of Anatomy | 2017

A population level atlas of Mus musculus craniofacial skeleton and automated image-based shape analysis

A. Murat Maga; Nicholas J. Tustison; Brian B. Avants

Laboratory mice are staples for evo/devo and genetics studies. Inbred strains provide a uniform genetic background to manipulate and understand gene–environment interactions, while their crosses have been instrumental in studies of genetic architecture, integration and modularity, and mapping of complex biological traits. Recently, there have been multiple large‐scale studies of laboratory mice to further our understanding of the developmental basis, evolution, and genetic control of shape variation in the craniofacial skeleton (i.e. skull and mandible). These experiments typically use micro‐computed tomography (micro‐CT) to capture the craniofacial phenotype in 3D and rely on manually annotated anatomical landmarks to conduct statistical shape analysis. Although the common choice for imaging modality and phenotyping provides the potential for collaborative research for even larger studies with more statistical power, the investigator (or lab‐specific) nature of the data collection hampers these efforts. Investigators are rightly concerned that subtle differences in how anatomical landmarks were recorded will create systematic bias between studies that will eventually influence scientific findings. Even if researchers are willing to repeat landmark annotation on a combined dataset, different lab practices and software choices may create obstacles for standardization beyond the underlying imaging data. Here, we propose a freely available analysis system that could assist in the standardization of micro‐CT studies in the mouse. Our proposal uses best practices developed in biomedical imaging and takes advantage of existing open‐source software and imaging formats. Our first contribution is the creation of a synthetic template for the adult mouse craniofacial skeleton from 25 inbred strains and five F1 crosses that are widely used in biological research. The template contains a fully segmented cranium, left and right hemi‐mandibles, endocranial space, and the first few cervical vertebrae. We have been using this template in our lab to segment and isolate cranial structures in an automated fashion from a mixed population of mice, including craniofacial mutants, aged 4–12.5 weeks. As a secondary contribution, we demonstrate an application of nearly automated shape analysis, using symmetric diffeomorphic image registration. This approach, which we call diGPA, closely approximates the popular generalized Procrustes analysis (GPA) but negates the collection of anatomical landmarks. We achieve our goals by using the open‐source advanced normalization tools (ANT) image quantification library, as well as its associated R library (ANTsR) for statistical image analysis. Finally, we make a plea to investigators to commit to using open imaging standards and software in their labs to the extent possible to increase the potential for data exchange and improve the reproducibility of findings. Future work will incorporate more anatomical detail (such as individual cranial bones, turbinals, dentition, middle ear ossicles) and more diversity into the template.

Collaboration


Dive into the A. Murat Maga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Navarro

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Achira Roy

Seattle Children's Research Institute

View shared research outputs
Top Co-Authors

Avatar

Amy Goldstein

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge