Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy Goldstein is active.

Publication


Featured researches published by Amy Goldstein.


The New England Journal of Medicine | 2012

Phenotypic Heterogeneity of Genomic Disorders and Rare Copy-Number Variants

Santhosh Girirajan; Jill A. Rosenfeld; Bradley P. Coe; Sumit Parikh; Neil R. Friedman; Amy Goldstein; Robyn A. Filipink; Juliann S. McConnell; Brad Angle; Wendy S. Meschino; Marjan M. Nezarati; Alexander Asamoah; Kelly E. Jackson; Gordon C. Gowans; Judith Martin; Erin P. Carmany; David W. Stockton; Rhonda E. Schnur; Lynette S. Penney; Donna M. Martin; Salmo Raskin; Kathleen A. Leppig; Heidi Thiese; Rosemarie Smith; Erika Aberg; Dmitriy Niyazov; Luis F. Escobar; Dima El-Khechen; Kisha Johnson; Robert Roger Lebel

BACKGROUND Some copy-number variants are associated with genomic disorders with extreme phenotypic heterogeneity. The cause of this variation is unknown, which presents challenges in genetic diagnosis, counseling, and management. METHODS We analyzed the genomes of 2312 children known to carry a copy-number variant associated with intellectual disability and congenital abnormalities, using array comparative genomic hybridization. RESULTS Among the affected children, 10.1% carried a second large copy-number variant in addition to the primary genetic lesion. We identified seven genomic disorders, each defined by a specific copy-number variant, in which the affected children were more likely to carry multiple copy-number variants than were controls. We found that syndromic disorders could be distinguished from those with extreme phenotypic heterogeneity on the basis of the total number of copy-number variants and whether the variants are inherited or de novo. Children who carried two large copy-number variants of unknown clinical significance were eight times as likely to have developmental delay as were controls (odds ratio, 8.16; 95% confidence interval, 5.33 to 13.07; P=2.11×10(-38)). Among affected children, inherited copy-number variants tended to co-occur with a second-site large copy-number variant (Spearman correlation coefficient, 0.66; P<0.001). Boys were more likely than girls to have disorders of phenotypic heterogeneity (P<0.001), and mothers were more likely than fathers to transmit second-site copy-number variants to their offspring (P=0.02). CONCLUSIONS Multiple, large copy-number variants, including those of unknown pathogenic significance, compound to result in a severe clinical presentation, and secondary copy-number variants are preferentially transmitted from maternal carriers. (Funded by the Simons Foundation Autism Research Initiative and the National Institutes of Health.).


Journal of Medical Genetics | 2011

The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis

Fanny Kortüm; Soma Das; Max Flindt; Deborah J. Morris-Rosendahl; Irina Stefanova; Amy Goldstein; Denise Horn; Eva Klopocki; Gerhard Kluger; Peter Martin; Anita Rauch; Agathe Roumer; Sulagna C. Saitta; Laurence E. Walsh; Dagmar Wieczorek; Gökhan Uyanik; Kerstin Kutsche; William B. Dobyns

Background Submicroscopic deletions in 14q12 spanning FOXG1 or intragenic mutations have been reported in patients with a developmental disorder described as a congenital variant of Rett syndrome. This study aimed to further characterise and delineate the phenotype of FOXG1 mutation positive patients. Method The study mapped the breakpoints of a 2;14 translocation by fluorescence in situ hybridisation and analysed three chromosome rearrangements in 14q12 by cytogenetic analysis and/or array comparative genomic hybridisation. The FOXG1 gene was sequenced in 210 patients, including 129 patients with unexplained developmental disorders and 81 MECP2 mutation negative individuals. Results One known mutation, seen in two patients, and nine novel mutations of FOXG1 including two deletions, two chromosome rearrangements disrupting or displacing putative cis-regulatory elements from FOXG1, and seven sequence changes, are reported. Analysis of 11 patients in this study, and a further 15 patients reported in the literature, demonstrates a complex constellation of features including mild postnatal growth deficiency, severe postnatal microcephaly, severe mental retardation with absent language development, deficient social reciprocity resembling autism, combined stereotypies and frank dyskinesias, epilepsy, poor sleep patterns, irritability in infancy, unexplained episodes of crying, recurrent aspiration, and gastro-oesophageal reflux. Brain imaging studies reveal simplified gyral pattern and reduced white matter volume in the frontal lobes, corpus callosum hypogenesis, and variable mild frontal pachgyria. Conclusions These findings have significantly expanded the number of FOXG1 mutations and identified two affecting possible cis-regulatory elements. While the phenotype of the patients overlaps both classic and congenital Rett syndrome, extensive clinical evaluation demonstrates a distinctive and clinically recognisable phenotype which the authors suggest designating as the FOXG1 syndrome.


Genetics in Medicine | 2015

Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society.

Sumit Parikh; Amy Goldstein; Mary Kay Koenig; Fernando Scaglia; Gregory M. Enns; Russell P. Saneto; Irina Anselm; Bruce H. Cohen; Marni J. Falk; Carol L. Greene; Andrea Gropman; Richard H. Haas; Michio Hirano; Phil G. Morgan; Katherine B. Sims; Mark A. Tarnopolsky; Johan L. K. Van Hove; Lynne A. Wolfe; Salvatore DiMauro

Purpose:The purpose of this statement is to review the literature regarding mitochondrial disease and to provide recommendations for optimal diagnosis and treatment. This statement is intended for physicians who are engaged in diagnosing and treating these patients. Methods:The Writing Group members were appointed by the Mitochondrial Medicine Society. The panel included members with expertise in several different areas. The panel members utilized a comprehensive review of the literature, surveys, and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve. Results:Consensus-based recommendations are provided for the diagnosis and treatment of mitochondrial disease.Conclusion:The Delphi process enabled the formation of consensus-based recommendations. We hope that these recommendations will help standardize the evaluation, diagnosis, and care of patients with suspected or demonstrated mitochondrial disease.Genet Med 17 9, 689–701.


International Journal of Eating Disorders | 1999

Methylphenidate treatment for bulimia nervosa associated with a cluster B personality disorder.

Mae S. Sokol; Nicola S. Gray; Amy Goldstein; Walter H. Kaye

OBJECTIVES Psychotherapy and antidepressant medication are helpful to many patients with bulimia nervosa (BN). However, a substantial number of bulimics respond poorly to such treatments. Recent studies suggest that many of the poor responders have cluster B personality disorders. In some ways, the symptomatology of bulimics who have a comorbid cluster B disorder resembles that of patients with attention deficit hyperactivity disorder (ADHD). In particular, individuals in both groups frequently have a high level of impulsivity. Such a resemblance raised the question of whether administration of methylphenidate (MPH), a drug used to treat ADHD, would have therapeutic effects in this subgroup of BN patients. METHODS In a pilot study, we administered MPH to 2 patients with BN and cluster B traits and found beneficial effects. These patients had not responded to adequate trials of psychotherapy and selective serotonin reuptake inhibitors (SSRIs). RESULTS MPH treatment was effective. Both Patients had decreased binging and purging. DISCUSSION MPH may be useful for bulimics with cluster B personality disorder who respond poorly to conventional treatment. Further studies of MPH administration may be worthwhile. Due to the potential risks, however, clinical treatment with this agent is not recommended at this time.


Neurology | 2016

Delineating the GRIN1 phenotypic spectrum A distinct genetic NMDA receptor encephalopathy

Johannes R. Lemke; Kirsten Geider; Katherine L. Helbig; Henrike O. Heyne; Hannah Schütz; Julia Hentschel; Carolina Courage; Christel Depienne; Caroline Nava; Delphine Héron; Rikke S. Møller; Helle Hjalgrim; Dennis Lal; Bernd A. Neubauer; Peter Nürnberg; Holger Thiele; G. Kurlemann; Georgianne L. Arnold; Vikas Bhambhani; Deborah Bartholdi; Christeen Ramane J. Pedurupillay; Doriana Misceo; Eirik Frengen; Petter Strømme; Dennis J. Dlugos; Emily S. Doherty; Emilia K. Bijlsma; Claudia Ruivenkamp; Mariette J.V. Hoffer; Amy Goldstein

Objective: To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology. Methods: We collected molecular and clinical data from several diagnostic and research cohorts. Functional consequences of GRIN1 mutations were investigated in Xenopus laevis oocytes. Results: We identified heterozygous de novo GRIN1 mutations in 14 individuals and reviewed the phenotypes of all 9 previously reported patients. These 23 individuals presented with a distinct phenotype of profound developmental delay, severe intellectual disability with absent speech, muscular hypotonia, hyperkinetic movement disorder, oculogyric crises, cortical blindness, generalized cerebral atrophy, and epilepsy. Mutations cluster within transmembrane segments and result in loss of channel function of varying severity with a dominant-negative effect. In addition, we describe 2 homozygous GRIN1 mutations (1 missense, 1 truncation), each segregating with severe neurodevelopmental phenotypes in consanguineous families. Conclusions: De novo GRIN1 mutations are associated with severe intellectual disability with cortical visual impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1-associated disorders.


Lancet Neurology | 2015

Characterisation of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next-generation sequencing study

Ghayda M. Mirzaa; Valerio Conti; Andrew E. Timms; Christopher D. Smyser; Sarah Ahmed; Melissa T. Carter; Sarah S. Barnett; Robert B. Hufnagel; Amy Goldstein; Yoko Narumi-Kishimoto; Carissa Olds; Sarah Collins; Kathreen Johnston; Jean-François Deleuze; Patrick Nitschke; Kathryn Friend; Catharine J. Harris; Allison L. Goetsch; Beth Martin; Evan A. Boyle; Elena Parrini; Davide Mei; Lorenzo Tattini; Anne Slavotinek; Ed Blair; Christopher Barnett; Jay Shendure; Jamel Chelly; William B. Dobyns; Renzo Guerrini

SUMMARY Background Bilateral perisylvian polymicrogyria (BPP), the most common form of regional polymicrogyria, causes the congenital bilateral perisylvian syndrome, featuring oromotor dysfunction, cognitive impairment and epilepsy. BPP is etiologically heterogeneous, but only a few genetic causes have been reported. The aim of this study was to identify additional genetic etiologies of BPP and delineate their frequency in this patient population. Methods We performed child-parent (trio)-based whole exome sequencing (WES) on eight children with BPP. Following the identification of mosaic PIK3R2 mutations in two of these eight children, we performed targeted screening of PIK3R2 in a cohort of 118 children with BPP who were ascertained from 1980 until 2015 using two methods. First, we performed targeted sequencing of the entire PIK3R2 gene by single molecule molecular inversion probes (smMIPs) on 38 patients with BPP with normal-large head size. Second, we performed amplicon sequencing of the recurrent PIK3R2 mutation (p.Gly373Arg) on 80 children with various types of polymicrogyria including BPP. One additional patient underwent clinical WES independently, and was included in this study given the phenotypic similarity to our cohort. All patients included in this study were children (< 18 years of age) with polymicrogyria enrolled in our research program. Findings Using WES, we identified a mosaic mutation (p.Gly373Arg) in the regulatory subunit of the PI3K-AKT-MTOR pathway, PIK3R2, in two children with BPP. Of the 38 patients with BPP and normal-large head size who underwent targeted next generation sequencing by smMIPs, we identified constitutional and mosaic PIK3R2 mutations in 17 additional children. In parallel, one patient was found to have the recurrent PIK3R2 mutation by clinical WES. Seven patients had BPP alone, and 13 had BPP in association with features of the megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH). Nineteen patients had the same mutation (Gly373Arg), and one had a nearby missense mutation (p.Lys376Glu). Across the entire cohort, mutations were constitutional in 12 and mosaic in eight patients. Among mosaic patients, we observed substantial variation in alternate (mutant) allele levels ranging from 2·5% (10/377) to 36·7% (39/106) of reads, equivalent to 5–73·4% of cells analyzed. Levels of mosaicism varied from undetectable to 17·1% (37/216) of reads in blood-derived compared to 29·4% (2030/6889) to 43·3% (275/634) in saliva-derived DNA. Interpretation Constitutional and mosaic mutations in the PIK3R2 gene are associated with a spectrum of developmental brain disorders ranging from BPP with a normal head size to the megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. The phenotypic variability and low-level mosaicism challenging conventional molecular methods have important implications for genetic testing and counseling.


JAMA Neurology | 2016

Recommendations for the Management of Strokelike Episodes in Patients With Mitochondrial Encephalomyopathy, Lactic Acidosis, and Strokelike Episodes.

Mary Kay Koenig; Lisa T. Emrick; Amel Karaa; Mark S. Korson; Fernando Scaglia; Sumit Parikh; Amy Goldstein

IMPORTANCE Strokelike episodes are a cardinal feature of several mitochondrial syndromes, including mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS). Recent advances in the understanding of the pathophysiologic mechanisms of strokelike episodes in MELAS have led to improved treatment options. OBSERVATIONS Current understanding of the cause of strokelike episodes in MELAS and present recommendations to assist in the identification and treatment of patients with MELAS who present with stroke are presented. Mounting evidence points toward a benefit of the nitric oxide precursors, arginine, to both prevent and reduce the severity of strokes in patients with MELAS. CONCLUSIONS AND RELEVANCE Although much information is still needed regarding the appropriate dosing and timing of arginine therapy in patients with MELAS, urgent administration of nitric oxide precursors in patients with MELAS ameliorates the clinical symptoms associated with strokelike episodes.


Mitochondrion | 2014

Practice patterns of mitochondrial disease physicians in North America. Part 1: diagnostic and clinical challenges.

Sumit Parikh; Amy Goldstein; Mary Kay Koenig; Fernando Scaglia; Gregory M. Enns; Russell P. Saneto; Irina Anselm; Abigail Collins; Bruce H. Cohen; Suzanne D. DeBrosse; David Dimmock; Marni J. Falk; Jaya Ganesh; Carol L. Greene; Andrea Gropman; Richard H. Haas; Stephen G. Kahler; John Kamholz; Fran Kendall; Mark S. Korson; Andre Mattman; Margherita Milone; Dmitriy Niyazov; Phillip L. Pearl; Tyler Reimschisel; Ramona Salvarinova-Zivkovic; Katherine B. Sims; Mark A. Tarnopolsky; Chang Yong Tsao; Johan L. K. Van Hove

Mitochondrial medicine is a young subspecialty. Clinicians have a limited evidence base on which to formulate clinical decisions regarding diagnosis, treatment and patient management. Mitochondrial medicine specialists have cobbled together an informal set of rules and paradigms for preventive care and management based in part on anecdotal experience. The Mitochondrial Medicine Society (MMS) assessed the current state of clinical practice from diagnosis, to preventive care and treatment, as provided by various mitochondrial disease specialists in North America. We hope that by obtaining this information we can begin moving towards formulating a set of consensus criteria and establishing standards of care.


Neurotherapeutics | 2013

Mitochondrial Disease in Childhood: Nuclear Encoded

Amy Goldstein; Poonam Bhatia; Jodie M. Vento

Primary mitochondrial disorders are clinically and genetically heterogeneous, caused by an alteration(s) in either mitochondrial DNA or nuclear DNA, and affect the respiratory chain’s ability to undergo oxidative phosphorylation, leading to decreased production of adenosine triphosphophate and subsequent energy failure. These disorders may present at any age, but children tend to have an acute onset of disease compared with subacute or slowly progressive presentation in adults. Varying organ involvement also contributes to the phenotypic spectrum seen in these disorders. The childhood presentation of primary mitochondrial disease is mainly due to nuclear DNA mutations, with mitochondrial DNA mutations being less frequent in childhood and more prominent in adulthood disease. The clinician should be aware of the pediatric presentation of mitochondrial disease and have an understanding of the myriad of nuclear genes responsible for these disorders. The nuclear genes can be best understood by utilizing a classification system of location and function within the mitochondria.


Mitochondrion | 2013

Practice patterns of mitochondrial disease physicians in North America. Part 2: treatment, care and management.

Sumit Parikh; Amy Goldstein; Mary Kay Koenig; Fernando Scaglia; Gregory M. Enns; Russell P. Saneto; Irina Anselm; Abigail Collins; Bruce H. Cohen; Suzanne D. DeBrosse; David Dimmock; Marni J. Falk; Jaya Ganesh; Carol Greene; Andrea Gropman; Richard H. Haas; Stephen G. Kahler; John Kamholz; Fran Kendall; Mark S. Korson; Andre Mattman; Margherita Milone; Dmitriy Niyazov; Phillip L. Pearl; Tyler Reimschisel; Ramona Salvarinova-Zivkovic; Katherine B. Sims; Mark A. Tarnopolsky; Chang-Yong Tsao; Johan L. K. Van Hove

Mitochondrial medicine is a young subspecialty. Clinicians have limited evidence-based guidelines on which to formulate clinical decisions regarding diagnosis, treatment and management for patients with mitochondrial disorders. Mitochondrial medicine specialists have cobbled together an informal set of rules and paradigms for preventive care and management based in part on anecdotal experience. The Mitochondrial Medicine Society (MMS) assessed the current state of clinical practice including diagnosis, preventive care and treatment, as provided by various mitochondrial disease providers in North America. In this second of two reports, we present data related to clinical practice that highlight the challenges clinicians face in the routine care of patients with established mitochondrial disease. Concerning variability in treatment and preventative care approaches were noted. We hope that sharing this information will be a first step toward formulating a set of consensus criteria and establishing standards of care.

Collaboration


Dive into the Amy Goldstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marni J. Falk

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jerry Vockley

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Bruce H. Cohen

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Scaglia

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge