A. Nohalez
University of Murcia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Nohalez.
Cell | 2017
Jun Wu; Aida Platero-Luengo; Masahiro Sakurai; Atsushi Sugawara; M.A. Gil; Takayoshi Yamauchi; Keiichiro Suzuki; Y. S. Bogliotti; C. Cuello; Mariana Morales Valencia; Daiji Okumura; Jingping Luo; Marcela Vilarino; I. Parrilla; Delia Alba Soto; Cristina A. Martinez; Tomoaki Hishida; Sonia Sánchez-Bautista; M. Llanos Martinez-Martinez; Huili Wang; A. Nohalez; Emi Aizawa; Paloma Martínez-Redondo; Alejandro Ocampo; Pradeep Reddy; Jordi Roca; Elizabeth A. Maga; Concepcion Rodriguez Esteban; W. Travis Berggren; Estrella Nuñez Delicado
Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos.
Theriogenology | 2016
Emilio A. Martinez; C. Cuello; I. Parrilla; Cristina A. Martinez; A. Nohalez; Jl Vazquez; J.M. Vazquez; Jordi Roca; M.A. Gil
Porcine embryo transfer (ET) technology has been in demand for decades because of its potential to provide considerable improvements in pig production with important sanitary, economic, and animal welfare benefits. Despite these advantages, the commercial use of ET is practically nonexistent. However, the two main obstacles hindering the commercial use of ET in pigs in the past several decades (i.e., surgical transfer and embryo preservation) have recently been overcome. A technique for nonsurgical deep-uterine (NsDU) ET of nonsedated gilts and sows, which was seemingly an impossible challenge just a few years ago, is a reality today. The improvements in embryo preservation that have been achieved in recent years and the excellent reproductive performance of the recipients after the NsDU-ET technique coupled with short-term and long-term-stored embryos represent essential progress for the international trade of porcine embryos and the practical use of ET by the pig industry. This review focuses, with an emphasis on our own findings, on the recent advances in embryo preservation and NsDU-ET technologies, which are starting to show potential for application under field conditions.
Scientific Reports | 2015
Emilio A. Martinez; Cristina Martínez; A. Nohalez; J. Sanchez-Osorio; J.M. Vazquez; Jordi Roca; I. Parrilla; M.A. Gil; C. Cuello
Surgical procedures are prevalent in porcine embryo transfer (ET) programs, where the use of vitrified embryos is quasi non-existent. This study compared the effectiveness of surgical vs nonsurgical deep uterine (NsDU) ET using vitrified, in vivo-derived embryos (morulae and blastocysts) on the reproductive performance and welfare of the recipients. The recipient sows (n = 122) were randomly assigned to one of the following groups: surgical ET with 30 vitrified-warmed embryos (S-30 group, control); NsDU-ET with 30 vitrified-warmed embryos (NsDU-30 group) and NsDU-ET with 40 vitrified-warmed embryos (NsDU-40 group). Regardless of embryo stage, the NsDU-ET with 40 embryos presented similar rates of farrowing (72.7%) and litter size (9.9 ± 2.1 piglets) as the customary surgical procedure (75.0% and 9.6 ± 2.7 piglets). Numbers of ET-embryos appeared relevant, since the NsDU-ET with 30 embryos resulted in a decrease (P < 0.05) in farrowing rates (38.9%) and litter sizes (5.7 ± 2.4 piglets). In conclusion, we demonstrate for the first time that farrowing rate and litter size following a NsDU-ET procedure increase in function of a larger number of transferred vitrified embryos, with fertility equalizing that obtained with the invasive surgical approach. The results open new possibilities for the widespread use of non-invasive ET in pigs.
Reproduction in Domestic Animals | 2016
Jun Wu; A Platero Luengo; M.A. Gil; Keiichiro Suzuki; C. Cuello; M Morales Valencia; I. Parrilla; Cristina A. Martinez; A. Nohalez; J. Roca; Emilio A. Martinez; Jc Izpisua Belmonte
More than eighteen years have passed since the first derivation of human embryonic stem cells (ESCs), but their clinical use is still met with several challenges, such as ethical concerns regarding the need of human embryos, tissue rejection after transplantation and tumour formation. The generation of human induced pluripotent stem cells (iPSCs) enables the access to patient-derived pluripotent stem cells (PSCs) and opens the door for personalized medicine as tissues/organs can potentially be generated from the same genetic background as the patient recipients, thus avoiding immune rejections or complication of immunosuppression strategies. In this regard, successful replacement, or augmentation, of the function of damaged tissue by patient-derived differentiated stem cells provides a promising cell replacement therapy for many devastating human diseases. Although human iPSCs can proliferate unlimitedly in culture and harbour the potential to generate all cell types in the adult body, currently, the functionality of differentiated cells is limited. An alternative strategy to realize the full potential of human iPSC for regenerative medicine is the in vivo tissue generation in large animal species via interspecies blastocyst complementation. As this technology is still in its infancy and there remains more questions than answers, thus in this review, we mainly focus the discussion on the conceptual framework, the emerging technologies and recent advances involved with interspecies blastocyst complementation, and will refer the readers to other more in-depth reviews on dynamic pluripotent stem cell states, genome editing and interspecies chimeras. Likewise, other emerging alternatives to combat the growing shortage of human organs, such as xenotransplantation or tissue engineering, topics that has been extensively reviewed, will not be covered here.
Scientific Reports | 2016
C. Cuello; Cristina Martínez; A. Nohalez; I. Parrilla; Jordi Roca; M.A. Gil; Emilio A. Martinez
The use of pH-stable media would simplify embryo vitrification and the warming of porcine embryos and might facilitate the application of embryo transfer in practice. In this work, we investigated whether a pH-stable basal medium constituted of Tyrode’s lactate medium, polyvinyl alcohol, and HEPES for buffering was suitable for porcine embryo vitrification warming in place of the conventional gas-equilibrated media. A high percentage (>90%) of embryos survived vitrification and warming in this medium, achieving in vitro survival rates similar to embryos vitrified-warmed using the conventional protocol and their fresh counterparts. The pH-stable medium did not affect the in vivo developmental competence of the vitrified-warmed embryos. A farrowing rate of 71.4% (5/7) with 10.4 ± 3.1 piglets born was obtained for the embryos vitrified and warmed in this medium and transferred to selected recipients. This medium will enable the use of simple, safe and standardized protocols for the vitrification and warming of porcine embryos for optimal embryo survival and quality when applied under field conditions. This study opens new possibilities for the widespread use of embryo transfer in pigs.
Molecular Reproduction and Development | 2017
M.A. Gil; Cristina A. Martinez; A. Nohalez; I. Parrilla; Jordi Roca; Jun Wu; Pablo J. Ross; C. Cuello; Juan Carlos Izpisúa; Emilio A. Martinez
Genome editing in pigs has tremendous practical applications for biomedicine. The advent of genome editing technology, with its use of site‐specific nucleases—including ZFNs, TALENs, and the CRISPR/Cas9 system—has popularized targeted zygote genome editing via one‐step microinjection in several mammalian species. Here, we review methods to optimize the developmental competence of genome‐edited porcine embryos and strategies to improve the zygote genome‐editing efficiency in pigs.
Scientific Reports | 2017
Cristina A. Martinez; A. Nohalez; I. Parrilla; Miguel Motas; Jordi Roca; Inmaculada Romero; Diego L. García-González; C. Cuello; Heriberto Rodriguez-Martinez; Emilio A. Martinez; M.A. Gil
The oil overlay micro-drop system is widely used for cultures of mammalian gametes and embryos. We evaluated hereby the effects of two unaltered commercial oils— Sigma mineral oil (S-MO) and Nidoil paraffin oil (N-PO)—on in vitro embryo production (IVP) outcomes using a pig model. The results showed that while either oil apparently did not affect oocyte maturation and fertilization rates, S-MO negatively affected embryo cleavage rates, blastocyst formation rates, and, consequently, total blastocyst efficiency of the system. No differences in the oxidation state were found between the oils or culture media incubated under S-MO or N-PO. Although both oils slightly differed in elemental composition, there were no differences in the concentrations of elements between fresh media and media incubated under oils. By contrast, we demonstrated clear oil-type differences in both the composition of volatile organic compounds (VOC) and the transfer of some of these VOC´s (straight-chain alkanes and pentanal and 1,3-diethyl benzene) to the culture medium, which could have influenced embryonic development.
Animal | 2017
A. Nohalez; Cristina A. Martinez; J. Reixach; M. Diaz; J. Vila; I. Colina; I. Parrilla; Jl Vazquez; J. Roca; M.A. Gil; Heriberto Rodriguez-Martinez; Emilio A. Martinez; C. Cuello
The improvement in porcine embryo preservation and non-surgical embryo transfer (ET) procedures achieved in recent years represents essential progress for the practical use of ET in the pig industry. This study aimed to evaluate the effects of parity, weaning-to-estrus interval (WEI) and season on reproductive and embryonic parameters at day 6 after insemination of donor sows superovulated after weaning. The selection of donor sows was based on their reproductive history, body condition and parity. The effects of parity at weaning (2 to 3, 4 to 5 or 6 to 7 litters), season (fall, winter and spring), and WEI (estrus within 3 to 4 days), and their interactions on the number of corpus luteum, cysts in sows with cysts, number and quality of viable and transferable embryos, embryo developmental stage and recovery and fertilization rates were evaluated using linear mixed effects models. The analyses showed a lack of significant effects of parity, season, WEI or their interactions on any of the reproductive and embryonic parameters examined. In conclusion, these results demonstrate that fertilization rates and numbers of viable and transferable embryos collected at day 6 of the cycle from superovulated donor sows are not affected by their parity, regardless of the time of the year (from fall to spring) and WEI (3 or 4 days).
Theriogenology | 2015
A. Nohalez; Cristina A. Martinez; M.A. Gil; C. Almiñana; J. Roca; Emilio A. Martinez; C. Cuello
Theriogenology | 2015
Cristina A. Martinez; A. Nohalez; C. Cuello; J.M. Vazquez; Jordi Roca; Emilio A. Martinez; M.A. Gil