Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Pérez del Palomar is active.

Publication


Featured researches published by A. Pérez del Palomar.


Medical Engineering & Physics | 2008

A finite element model to accurately predict real deformations of the breast

A. Pérez del Palomar; B. Calvo; Javier Herrero; José Felipe Villanueva López; M. Doblaré

Most surgical procedures in breast plastic surgery are either reconstructive procedures following oncologic interventions (tumorectomy, quadrantectomy, mastectomy ...) or aesthetic ones, both augmentation and reduction. With current techniques, the results of such procedures cannot be fully guaranteed. Usually, surgical planning is based on a photographic and anthropometric study of the breast only. Among others, one of the difficulties that the plastic surgeons have is the noticeable change of the breast shape with the position of the patient. Thus, it is more and more necessary to plan a presurgical methodology to help the plastic surgeon and guarantee the patient a successful result of the intervention. In order to establish a reliable simulation method that could predict a patient-specific outcome after breast surgery, this study started trying to correlate spatial features of the breast between lying and standing up positions. A biomechanical model of breast was proposed and implemented into a finite element context to predict deformations, and from these the breast shape in different positions. The resulting shapes were compared with multimodal images, whereas the breast surface displacements were compared with manually identified landmarks and 3D scanner images. From the results, it can be concluded that the model hereby presented reasonably approximates breast response to gravity forces, therefore providing accurate and useful information to the surgeon planning such surgical procedures.


Journal of Biomechanics | 2010

An accurate validation of a computational model of a human lumbosacral segment

Vincenzo Moramarco; A. Pérez del Palomar; Carmine Pappalettere; M. Doblaré

Clinical studies have recently documented that there is sufficient evidence to suggest that abnormal motion may be an indicator of abnormal mechanics of the spine and, therefore, may be associated with some types of low-back pain. However, designating a motion as abnormal requires knowledge of normal motions. This work hence aims to develop an accurate computational model to simulate the bio-mechanical response of the whole lumbosacral spinal unit (L1-S1) under physiological loadings and constraint conditions. In order to meet this objective, computed tomography (CT) scanning protocols, finite element (FE) analysis and accurate constitutive modelling have been integrated. Then the ranges of motion (ROM) under flexion, extension and lateral bending moment were measured and compared with experimental data, finding an excellent agreement. In particular, the ability of the model to reproduce the relative rotation between each couple of vertebrae was proved. Finally, the shear stresses for the most extreme load cases were reported in order to predict which are the most risky conditions and where the maximum damage would be located. The results indicate that the greater values of the stresses were located at L4-S1 levels just in the interfaces between disc and vertebrae across the posterior and posterolateral zone. This result can be clinically correlated with the existence of damage exactly where the stresses were maximal in the proposed finite element model.


Medical Engineering & Physics | 2010

Experimental characterization and constitutive modeling of the mechanical behavior of the human trachea

O. Trabelsi; A. Pérez del Palomar; J. L. López-Villalobos; A. Ginel; M. Doblaré

BACKGROUND AND AIMSnCartilage and smooth muscle constitute the main structural components of the human central airways, their mechanical properties affect the flow in the trachea and contribute to the biological function of the respiratory system. The aim of this work is to find out the mechanical passive response of the principal constituents of the human trachea under static tensile conditions and to propose constitutive models to describe their behavior.nnnMETHODSnHistological analyses to characterize the tissues and mechanical tests have been made on three human trachea specimens obtained from autopsies. Uniaxial tensile tests on cartilaginous rings and smooth muscle were performed. Tracheal cartilage was considered an elastic material and its Youngs modulus and Poissons coefficient were determined fitting the experimental curves using a Neo-Hookean model. The smooth muscle was proved to behave as a reinforced hyperelastic material with two families of collagen fibers, and its non-linearity was investigated using the Holzapfel strain-energy density function for two families of fibers to fit the experimental data obtained from longitudinal and transversal cuts.nnnRESULTSnFor cartilage, fitting the experimental curves to an elastic model, a Youngs modulus of 3.33 MPa and nu=0.49 were obtained. For smooth muscle, several parameters of the Holzapfel function were found out (C(10)=0.877 kPa, k(1)=0.154 kPa, k(2)=34.157, k(3)=0.347 kPa and k(4)=13.889) and demonstrated that the tracheal muscle was stiffer in the longitudinal direction.nnnCONCLUSIONnThe better understanding of how these tissues mechanically behave is essential for a correct modeling of the human trachea, a better simulation of its response under different loading conditions, and the development of strategies for the design of new endotracheal prostheses.


Annals of Biomedical Engineering | 2010

FSI Analysis of the Coughing Mechanism in a Human Trachea

M. Malvè; A. Pérez del Palomar; J. L. López-Villalobos; A. Ginel; M. Doblaré

The main physiological function of coughing is to remove from the airways the mucus and foreign particles that enter the lungs with respirable air. However, in patients with endotracheal tubes, further surgery has to be performed to improve cough effectiveness. Thus, it is necessary to analyze how this process is carried out in healthy tracheas to suggest ways to improve its efficacy in operated patients. A finite element model of a human trachea is developed and used to analyze the deformability of the tracheal walls under coughing. The geometry of the trachea is obtained from CT of a 70-year-old male patient. A fluid structure interaction approach is used to analyze the deformation of the wall when the fluid (in this case, air) flows inside the trachea. A structured hexahedral-based grid for the tracheal walls and an unstructured tetrahedral-based mesh with coincident nodes for the fluid are used to perform the simulations with the finite element-based commercial software code (ADINA R&D Inc.). Tracheal wall is modeled as an anisotropic fiber reinforced hyperelastic solid material in which the different orientation of the fibers is introduced. The implantation of an endotracheal prosthesis is simulated. Boundary conditions for breathing and coughing are applied at the inlet and at the outlet surfaces of the fluid mesh. The collapsibility of a human trachea under breathing and coughing is shown in terms of flow patterns and wall stresses. The ability of the model to reproduce the normal breathing and coughing is proved by comparing the deformed shape of the trachea with experimental results. Moreover the implantation of an endotracheal prosthesis would be related with a decrease of coughing efficiency, as clinically seen.


Journal of Biomechanical Engineering-transactions of The Asme | 2011

FSI Analysis of a Healthy and a Stenotic Human Trachea Under Impedance-Based Boundary Conditions

M. Malvè; A. Pérez del Palomar; S. Chandra; J. L. López-Villalobos; A. Mena; Ender A. Finol; A. Ginel; M. Doblaré

In this work, a fluid-solid interaction (FSI) analysis of a healthy and a stenotic human trachea was studied to evaluate flow patterns, wall stresses, and deformations under physiological and pathological conditions. The two analyzed tracheal geometries, which include the first bifurcation after the carina, were obtained from computed tomography images of healthy and diseased patients, respectively. A finite element-based commercial software code was used to perform the simulations. The tracheal wall was modeled as a fiber reinforced hyperelastic solid material in which the anisotropy due to the orientation of the fibers was introduced. Impedance-based pressure waveforms were computed using a method developed for the cardiovascular system, where the resistance of the respiratory system was calculated taking into account the entire bronchial tree, modeled as binary fractal network. Intratracheal flow patterns and tracheal wall deformation were analyzed under different scenarios. The simulations show the possibility of predicting, with FSI computations, flow and wall behavior for healthy and pathological tracheas. The computational modeling procedure presented herein can be a useful tool capable of evaluating quantities that cannot be assessed in vivo, such as wall stresses, pressure drop, and flow patterns, and to derive parameters that could help clinical decisions and improve surgical outcomes.


Journal of Biomechanical Engineering-transactions of The Asme | 2006

3D finite element simulation of the opening movement of the mandible in healthy and pathologic situations

A. Pérez del Palomar; M. Doblaré

One of the essential causes of disk disorders is the pathologic change in the ligamentous attachments of the disk-condyle complex. In this paper, the response of the soft components of a human temporomandibular joint during mouth opening in healthy and two pathologic situations was studied. A three-dimensional finite element model of this joint comprising the bone components, the articular disk, and the temporomandibular ligaments was developed from a set of medical images. A fiber reinforced porohyperelastic model was used to simulate the behavior of the articular disk, taking into account the orientation of the fibers in each zone of this cartilage component. The condylar movements during jaw opening were introduced as the loading condition in the analysis. In the healthy joint, it was obtained that the highest stresses were located at the lateral part of the intermediate zone of the disk. In this case, the collateral ligaments were subject to high loads, since they are responsible of the attachment of the disk to the condyle during the movement of the mandible. Additionally, two pathologic situations were simulated: damage of the retrodiscal tissue and disruption of the lateral discal ligament. In both cases, the highest stresses moved to the posterior part of the disk since it was displaced in the anterior-medial direction. In conclusion, in the healthy joint, the highest stresses were located in the lateral zone of the disk where perforations are found most often in the clinical experience. On the other hand, the results obtained in the damaged joints suggested that the disruption of the disk attachments may cause an anterior displacement of the disk and instability of the joint.


Journal of Biomechanical Engineering-transactions of The Asme | 2011

FSI Analysis of a Human Trachea Before and After Prosthesis Implantation

M. Malvè; A. Pérez del Palomar; S. Chandra; J. L. López-Villalobos; Ender A. Finol; A. Ginel; M. Doblaré

In this work we analyzed the response of a stenotic trachea after a stent implantation. An endotracheal stent is the common treatment for tracheal diseases such as stenosis, chronic cough, or dispnoea episodes. Medical treatment and surgical techniques are still challenging due to the difficulties in overcoming potential complications after prosthesis implantation. A finite element model of a diseased and stented trachea was developed starting from a patient specific computerized tomography (CT) scan. The tracheal wall was modeled as a fiber reinforced hyperelastic material in which we modeled the anisotropy due to the orientation of the collagen fibers. Deformations of the tracheal cartilage rings and of the muscular membrane, as well as the maximum principal stresses, are analyzed using a fluid solid interaction (FSI) approach. For this reason, as boundary conditions, impedance-based pressure waveforms were computed modeling the nonreconstructed vessels as a binary fractal network. The results showed that the presence of the stent prevents tracheal muscle deflections and indicated a local recirculatory flow on the stent top surface which may play a role in the process of mucous accumulation. The present work gives new insight into clinical procedures, predicting their mechanical consequences. This tool could be used in the future as preoperative planning software to help the thoracic surgeons in deciding the optimal prosthesis type as well as its size and positioning.


Philosophical Transactions of the Royal Society A | 2010

Patient-specific models of human trachea to predict mechanical consequences of endoprosthesis implantation.

A. Pérez del Palomar; O. Trabelsi; A. Mena; J. L. López-Villalobos; A. Ginel; M. Doblaré

Nowadays, interventions associated with the implantation of tracheal prostheses in patients with airway pathologies are very common. This surgery may promote problems such as migration of the prosthesis, development of granulation tissue at the edges of the stent with overgrowth of the tracheal lumen or accumulation of secretions inside the prosthesis. Among the movements that the trachea carries out, swallowing seems to have harmful consequences for the tracheal tissues surrounding the prosthesis. In this work, a finite-element-based tool is presented to construct patient-specific tracheal models, introducing the endotracheal prosthesis and analysing the mechanical consequences of this surgery during swallowing. A complete description of a patient-specific tracheal model is given, and a fully experimental characterization of the tracheal tissues is presented. To construct patient-specific grids, a mesh adaptation algorithm has been developed and the implantation of a tracheal prosthesis is simulated. The ascending deglutition movement of the trachea is recorded using real data from each specific patient from fluoroscopic images before and after implantation. The overall behaviour of the trachea is modified when a prosthesis is introduced. The presented tool has been particularized for two different patients (patient A and patient B), allowing prediction of the consequences of this kind of surgery. In particular, patient A had a decrease of almost 30 per cent in his ability to swallow, and an increase in stresses that were three times higher after prosthesis implantation. In contrast, patient B, who had a shorter trachea and who seemed to undergo more damaging effects, did not have a significant reduction in his ability to swallow and did not present an increase in stress in the tissues. In both cases, there are clinical studies that validate our results: namely, patient A underwent a further intervention whereas the outcome of patient B’s surgery was completely successful. Notwithstanding the fact that there are a lot of uncertainties relating to the implantation of endotracheal prostheses, the present work gives a new insight into these procedures, predicting their mechanical consequences. This tool could be used in the future as pre-operative planning software to help thoracic surgeons in deciding the optimal prosthesis as well as its size and positioning.


Journal of Anatomy | 2007

Influence of unilateral disc displacement on the stress response of the temporomandibular joint discs during opening and mastication

A. Pérez del Palomar; M. Doblaré

The temporomandibular joint plays a crucial role in human mastication acting as a guide of jaw movements. During these movements, the joint is subjected to loads which cause stresses and deformations in its cartilaginous structures. A perfect balance between the two sides of the joint is essential to maintain the physiological stress level within the tissues. Therefore, it has been suggested that a derangement of the joint is a contributing factor in the development of mandibular asymmetry, especially if problems of the temporomandibular joint start in childhood or adolescence. To analyze the movement of the mandible and the stresses undergone by the discs, two finite element models of the human temporomandibular joint including the masticatory system were developed, one corresponding to a healthy joint and the other with a unilateral anterior disc displacement with their movement controlled by muscle activation. A fibre‐reinforced porohyperelastic model was used to simulate the behaviour of the articular discs. The stress distribution was analyzed in both models during free opening and closing, and during the introduction of a resistant force between incisors or molars. It was found that a slight unilateral anterior disc displacement does not lead to mandibular asymmetry but to a slight decrease of the maximum gape. With the introduction of a restriction between incisors, the maximum stresses moved to the anterior band in contrast to what happened if the restriction was imposed between molars where maximum stresses were located more posteriorly. Finally, the presence of a unilateral displacement of the disc involved a strong change in the overall behaviour of the joint including also the healthy side, where the maximum stresses moved to the posterior part.


Journal of Applied Mathematics | 2014

A Constitutive Model for the Annulus of Human Intervertebral Disc: Implications for Developing a Degeneration Model and Its Influence on Lumbar Spine Functioning

José Cegoñino; Vincenzo Moramarco; Andrea Calvo-Echenique; Carmine Pappalettere; A. Pérez del Palomar

The study of the mechanical properties of the annulus fibrosus of the intervertebral discs is significant to the study on the diseases of lumbar intervertebral discs in terms of both theoretical modelling and clinical application value. The annulus fibrosus tissue of the human intervertebral disc (IVD) has a very distinctive structure and behaviour. It consists of a solid porous matrix, saturated with water, which mainly contains proteoglycan and collagen fibres network. In this work a mathematical model for a fibred reinforced material including the osmotic pressure contribution was developed. This behaviour was implemented in a finite element (FE) model and numerical characterization and validation, based on experimental results, were carried out for the normal annulus tissue. The characterization of the model for a degenerated annulus was performed, and this was capable of reproducing the increase of stiffness and the reduction of its nonlinear material response and of its hydrophilic nature. Finally, this model was used to reproduce the degeneration of the L4L5 disc in a complete finite element lumbar spine model proving that a single level degeneration modifies the motion patterns and the loading of the segments above and below the degenerated disc.

Collaboration


Dive into the A. Pérez del Palomar's collaboration.

Top Co-Authors

Avatar

M. Doblaré

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar

M. Malvè

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar

O. Trabelsi

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar

B. Calvo

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar

A. Mena

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar

S. Chandra

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ender A. Finol

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Carmine Pappalettere

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Moramarco

Instituto Politécnico Nacional

View shared research outputs
Researchain Logo
Decentralizing Knowledge