A. Possenti
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Possenti.
Nature | 2003
M. Burgay; N. D'Amico; A. Possenti; R. N. Manchester; A. G. Lyne; B. C. Joshi; M. A. McLaughlin; M. Kramer; J. Sarkissian; F. Camilo; V. Kalogera; C. Kim; D. R. Lorimer
The merger of close binary systems containing two neutron stars should produce a burst of gravitational waves, as predicted by the theory of general relativity. A reliable estimate of the double-neutron-star merger rate in the Galaxy is crucial in order to predict whether current gravity wave detectors will be successful in detecting such bursts. Present estimates of this rate are rather low, because we know of only a few double-neutron-star binaries with merger times less than the age of the Universe. Here we report the discovery of a 22-ms pulsar, PSR J0737–3039, which is a member of a highly relativistic double-neutron-star binary with an orbital period of 2.4 hours. This system will merge in about 85 Myr, a time much shorter than for any other known neutron-star binary. Together with the relatively low radio luminosity of PSR J0737–3039, this timescale implies an order-of-magnitude increase in the predicted merger rate for double-neutron-star systems in our Galaxy (and in the rest of the Universe).
Science | 2013
David J. Thornton; B. W. Stappers; M. Bailes; Benjamin R. Barsdell; S. D. Bates; N. D. R. Bhat; M. Burgay; S. Burke-Spolaor; D. J. Champion; P. Coster; N. D'Amico; A. Jameson; S. Johnston; M. J. Keith; M. Kramer; Lina Levin; S. Milia; C. Ng; A. Possenti; W. van Straten
Mysterious Radio Bursts It has been uncertain whether single, short, and bright bursts of radio emission that have been observed are celestial or terrestrial in origin. Thornton et al. (p. 53; see the Perspective by Cordes) report the detection of four nonrepeating radio transient events with millisecond duration in data from the 64-meter Parkes radio telescope in Australia. The properties of these radio bursts indicate that they had their origin outside our galaxy, but it is not possible to tell what caused them. Because the intergalactic medium affects the characteristics of the bursts, it will be possible to use them to study its properties. Radio telescope data revealed four short, extragalactic, nonrepeating bursts of radio emission whose source is unknown. [Also see Perspective by Cordes] Searches for transient astrophysical sources often reveal unexpected classes of objects that are useful physical laboratories. In a recent survey for pulsars and fast transients, we have uncovered four millisecond-duration radio transients all more than 40° from the Galactic plane. The bursts’ properties indicate that they are of celestial rather than terrestrial origin. Host galaxy and intergalactic medium models suggest that they have cosmological redshifts of 0.5 to 1 and distances of up to 3 gigaparsecs. No temporally coincident x- or gamma-ray signature was identified in association with the bursts. Characterization of the source population and identification of host galaxies offers an opportunity to determine the baryonic content of the universe.
Monthly Notices of the Royal Astronomical Society | 2001
R. N. Manchester; A. G. Lyne; F. Camilo; J. F. Bell; Victoria M. Kaspi; N. D'Amico; N. P. F. McKay; F. Crawford; I. H. Stairs; A. Possenti; M. Kramer; D.C. Sheppard
limiting flux density of the survey is about 0.2 mJy. At shorter or longer periods or higher dispersions, the sensitivity is reduced. Timing observations are carried out for pulsars discovered in the survey for 12‐18 months after confirmation to obtain accurate positions, spin parameters, dispersion measures, pulse shapes and mean flux densities. The survey is proving to be extremely successful, with more than 600 pulsars discovered so far. We expect that, when complete, this one survey will come close to finding as many pulsars as all previous pulsar surveys put together. The newly discovered pulsars tend to be young, distant and of high radio luminosity. They will form a valuable sample for studies of pulsar emission properties, the Galactic distribution and evolution of pulsars, and as probes of interstellar medium properties. This paper reports the timing and pulse shape parameters for the first 100 pulsars timed at Parkes, including three pulsars with periods of less than 100 ms which are members of binary systems. These results are briefly compared with the parameters of the previously known population.
Nature | 2013
A. Papitto; C. Ferrigno; E. Bozzo; N. Rea; L. Burderi; M. Burgay; Sergio Campana; T. Di Salvo; M. Falanga; Miroslav Filipovic; P. C. C. Freire; J. W. T. Hessels; A. Possenti; Scott M. Ransom; Alessandro Riggio; Patrizia Romano; J. Sarkissian; I. H. Stairs; L. Stella; D. F. Torres; M. H. Wieringa; G. F. Wong
It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star’s rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.
The Astrophysical Journal | 2004
V. Kalogera; C. Kim; D. R. Lorimer; M. Burgay; N. D'Amico; A. Possenti; R. N. Manchester; A. G. Lyne; B. C. Joshi; M. A. McLaughlin; M. Kramer; J. Sarkissian; F. Camilo
We report on the newly increased event rates due to the recent discovery of the highly relativistic binary pulsar J07373039. Using a rigorous statistical method, we present the calculations reported by Burgay et al., which produce a coalescence rate for Galactic double neutron star (DNS) systems that is higher by a factor of 6–7 compared to estimates made prior to the new discovery. Our method takes into account known pulsar survey selection effects and biases due to small-number statistics. This rate increase has dramatic implications for gravitational wave detectors. For the initial Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors, the most probable detection rates for DNS in-spirals are one event per 5–250 yr; at 95% confidence, we obtain rates up to one per 1.5 yr. For the advanced LIGO detectors, the most probable rates are 20–1000 events per year. These predictions, for the first time, bring the expectations for DNS detections by the initial LIGO detectors to the astrophysically relevant regime. We also use our models to predict that the large-scale Parkes Multibeam pulsar survey with acceleration searches could detect an average of three to four binary pulsars similar to those known at present. Subject headings: binaries: close — gravitational waves — methods: statistical — stars: neutron
Monthly Notices of the Royal Astronomical Society | 2003
M. Kramer; J. F. Bell; R. N. Manchester; A. G. Lyne; F. Camilo; I. H. Stairs; N. D'Amico; V. M. Kaspi; G. Hobbs; D. J. Morris; F. Crawford; A. Possenti; B. C. Joshi; M. A. McLaughlin; D. R. Lorimer; A. J. Faulkner
The Parkes Multibeam Pulsar Survey has unlocked vast areas of the Galactic plane, which were previously invisible to earlier low-frequency and less-sensitive surveys. The survey has discovered more than 600 new pulsars so far, including many that are young and exotic. In this paper we report the discovery of 200 pulsars for which we present positional and spin-down parameters, dispersion measures, flux densities and pulse profiles. A large number of these new pulsars are young and energetic, and we review possible associations of γ -ray sources with the sample of about 1300 pulsars for which timing solutions are known. Based on a statistical analysis, we estimate that about 19 ± 6 associations are genuine. The survey has also discovered 12 pulsars with spin properties similar to those of the Vela pulsar, nearly doubling the known population of such neutron stars. Studying the properties of all known ‘Vela-like’ pulsars, we find their radio luminosities to be similar to normal pulsars, implying that they are very inefficient radio sources. Finally, we review the use of the newly discovered pulsars as Galactic probes and discuss the implications of the new NE2001 Galactic electron density model for the determination of pulsar distances and luminosities.
Monthly Notices of the Royal Astronomical Society | 2015
E. Petroff; M. Bailes; E. D. Barr; B. R. Barsdell; N. D. R. Bhat; Fuyan Bian; S. Burke-Spolaor; M. Caleb; D. J. Champion; P. Chandra; G. S. Da Costa; C. Delvaux; Chris Flynn; N. Gehrels; J. Greiner; A. Jameson; S. Johnston; Mansi M. Kasliwal; E. F. Keane; Stefan C. Keller; J. Kocz; M. Kramer; G. Leloudas; Daniele Malesani; John S. Mulchaey; C. Ng; Eran O. Ofek; Daniel A. Perley; A. Possenti; Brian Paul Schmidt
Fast radio bursts (FRBs) are one of the most tantalizing mysteries of the radio sky; their progenitors and origins remain unknown and until now no rapid multiwavelength follow-up of an FRB has been possible. New instrumentation has decreased the time between observation and discovery from years to seconds, and enables polarimetry to be performed on FRBs for thefirst time. We have discovered an FRB (FRB 140514) in real-time on 2014 May 14 at 17:14:11.06 UTCattheParkesradiotelescopeandtriggeredfollow-upatotherwavelengthswithinhoursof theevent.FRB140514wasfoundwithadispersionmeasure(DM)of562.7(6)cm −3 pc,giving an upper limit on source redshift of z 0.5. FRB 140514 was found to be 21 ± 7 per cent (3σ) circularly polarized on the leading edge with a 1σ upper limit on linear polarization <10 per cent. We conclude that this polarization is intrinsic to the FRB. If there was any intrinsic linear polarization, as might be expected from coherent emission, then it may have been depolarized by Faraday rotation caused by passing through strong magnetic fields and/or high-density environments. FRB 140514 was discovered during a campaign to re-observe known FRB fields, and lies close to a previous discovery, FRB 110220; based on the difference in DMs of these bursts and time-on-sky arguments, we attribute the proximity to sampling bias and conclude that they are distinct objects. Follow-up conducted by 12 telescopes observing from X-ray to radio wavelengths was unable to identify a variable multiwavelength counterpart, allowing us to rule out models in which FRBs originate from nearby ( z< 0.3) supernovae and long duration gamma-ray bursts.
Nature | 2016
E. F. Keane; S. Johnston; S. Bhandari; E. D. Barr; N. D. R. Bhat; M. Burgay; M. Caleb; Chris Flynn; A. Jameson; M. Kramer; E. Petroff; A. Possenti; W. van Straten; M. Bailes; S. Burke-Spolaor; R. P. Eatough; B. W. Stappers; Tomonori Totani; Mareki Honma; Hisanori Furusawa; Takashi Hattori; Yuu Niino; H. Sugai; Tsuyoshi Terai; Nozomu Tominaga; Shotaro Yamasaki; Naoki Yasuda; R. Allen; Jeff Cooke; J. Jencson
In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy’s redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called ‘missing baryons’. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.E. F. Keane, S. Johnston, S. Bhandari, E. Barr, N. D. R. Bhat, M. Burgay, M. Caleb, C. Flynn, A. Jameson, M. Kramer, E. Petroff, A. Possenti, W. van Straten, M. Bailes, S. Burke-Spolaor, R. P. Eatough, B. Stappers, T. Totani, M. Honma, H. Furusawa, T. Hattori, T. Morokuma, Y. Niino, H. Sugai, T. Terai, N. Tominaga, S. Yamasaki, N. Yasuda, R. Allen, J. Cooke, J. Jencson, M. M. Kasliwal, D. L. Kaplan, S. J. Tingay, A. Williams, R. Wayth, P. Chandra, D. Perrodin, M. Berezina, M. Mickaliger & C. Bassa
Monthly Notices of the Royal Astronomical Society | 2002
D. J. Morris; G. Hobbs; A. G. Lyne; I. H. Stairs; F. Camilo; R. N. Manchester; A. Possenti; J. F. Bell; V. M. Kaspi; N. D’Amico; N. P. F. McKay; F. Crawford; M. Kramer
The Parkes Multibeam Pulsar Survey is a sensitive survey of a strip of the Galactic plane with |b| < 5 ◦ and 260 ◦ < l < 50 ◦ at 1374 MHz. Here we report the discovery of 120 new pulsars and subsequent timing observations, primarily using the 76-m Lovell radio telescope at Jodrell Bank. The main features of the sample of 370 published pulsars discovered during the multibeam survey are described. Furthermore, we highlight two pulsars: PSR J1734−3333, a young pulsar with the second highest surface magnetic field strength among the known radio pulsars, Bs = 5.4 × 10 13 G, and PSR J1830−1135, the second slowest radio pulsar known,
Monthly Notices of the Royal Astronomical Society | 2016
D. J. Champion; E. Petroff; M. Kramer; M. J. Keith; M. Bailes; E. D. Barr; S. D. Bates; N. D. R. Bhat; M. Burgay; S. Burke-Spolaor; C. M. L. Flynn; A. Jameson; S. Johnston; C. Ng; L. Levin; A. Possenti; B. W. Stappers; W. van Straten; David J. Thornton; C. Tiburzi; A. G. Lyne
The detection of five new fast radio bursts (FRBs) found in the 1.4-GHz High Time Resolution Universe high-latitude survey at Parkes, is presented. The rate implied is 7(-3)(+5) x 10(3) (95 per cent) FRBs sky(-1) d(-1) above a fluence of 0.13 Jy ms for an FRB of 0.128 ms duration to 1.5 Jy ms for 16 ms duration. One of these FRBs has a two-component profile, in which each component is similar to the known population of single component FRBs and the two components are separated by 2.4 +/- 0.4 ms. All the FRB components appear to be unresolved following deconvolution with a scattering tail and accounting for intrachannel smearing. The two-component burst, FRB 121002, also has the highest dispersion measure (1629 pc cm(-3)) of any FRB to-date. Many of the proposed models to explain FRBs use a single high-energy event involving compact objects (such as neutron-star mergers) and therefore cannot easily explain a two-component FRB. Models that are based on extreme versions of flaring, pulsing, or orbital events, however, could produce multiple component profiles. The compatibility of these models and the FRB rate implied by these detections is discussed.
Collaboration
Dive into the A. Possenti's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs