A. Rassat
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Rassat.
Monthly Notices of the Royal Astronomical Society | 2010
Sarah Bridle; Sreekumar T. Balan; Matthias Bethge; Marc Gentile; Stefan Harmeling; Catherine Heymans; Michael Hirsch; Reshad Hosseini; M. Jarvis; D. Kirk; Thomas D. Kitching; Konrad Kuijken; Antony Lewis; Stephane Paulin-Henriksson; Bernhard Schölkopf; Malin Velander; Lisa Voigt; Dugan Witherick; Adam Amara; G. M. Bernstein; F. Courbin; M. S. S. Gill; Alan Heavens; Rachel Mandelbaum; Richard Massey; Baback Moghaddam; A. Rassat; Alexandre Refregier; Jason Rhodes; Tim Schrabback
We present the results of the Gravitational LEnsing Accuracy Testing 2008 (GREAT08) Challenge, a blind analysis challenge to infer weak gravitational lensing shear distortions from images. The primary goal was to stimulate new ideas by presenting the problem to researchers outside the shear measurement community. Six GREAT08 Team methods were presented at the launch of the Challenge and five additional groups submitted results during the 6-month competition. Participants analyzed 30 million simulated galaxies with a range in signal-to-noise ratio, point spread function ellipticity, galaxy size and galaxy type. The large quantity of simulations allowed shear measurement methods to be assessed at a level of accuracy suitable for currently planned future cosmic shear observations for the first time. Different methods perform well in different parts of simulation parameter space and come close to the target level of accuracy in several of these. A number of fresh ideas have emerged as a result of the Challenge including a re-examination of the process of combining information from different galaxies, which reduces the dependence on realistic galaxy modelling. The image simulations will become increasingly sophisticated in future GREAT Challenges, meanwhile the GREAT08 simulations remain as a benchmark for additional developments in shear measurement algorithms.
Monthly Notices of the Royal Astronomical Society | 2006
Pirin Erdogdu; Ofer Lahav; John P. Huchra; Matthew Colless; Roc Michael Cutri; Emilio E. Falco; Teddy George; T. H. Jarrett; D. Heath Jones; Lucas M. Macri; Jeff Mader; Nathalie Martimbeau; Michael Andrew Pahre; Quentin A. Parker; A. Rassat; Will Saunders
We present the reconstructed real-space density and the predicted velocity fields from the Two-Micron All-Sky Redshift Survey (2MRS). The 2MRS is the densest all-sky redshift survey to date and includes about 23 200 galaxies with extinction-corrected magnitudes brighter than Ks= 11.25 . Our method is based on the expansion of these fields in Fourier–Bessel functions. Within this framework, the linear redshift distortions only affect the density field in the radial direction and can easily be deconvolved using a distortion matrix. Moreover, in this coordinate system, the velocity field is related to the density field by a simple linear transformation. The shot noise errors in the reconstructions are suppressed by means of a Wiener filter which yields a minimum variance estimate of the density and velocity fields. Using the reconstructed real-space density fields, we identify all major superclusters and voids. At 50 h^−1 Mpc , our reconstructed velocity field indicates a backside infall to the Great Attractor region of vinfall= (491 ± 200) (β/0.5) km s^−1 in the Local Group frame and vinfall= (64 ± 205) (β/0.5) km s^−1 in the cosmic microwave background (CMB) frame and β is the redshift distortion parameter. The direction of the reconstructed dipole agrees well with the dipole derived by Erdogdu et al. The misalignment between the reconstructed 2MRS and the CMB dipoles drops to 13° at around 5000 km s^−1 but then increases at larger distances.
The Annals of Applied Statistics | 2009
Sarah Bridle; John Shawe-Taylor; Adam Amara; Douglas E. Applegate; Sreekumar T. Balan; Joel Bergé; G. M. Bernstein; H. Dahle; Thomas Erben; M. S. S. Gill; Alan Heavens; Catherine Heymans; F. William High; Henk Hoekstra; M. Jarvis; D. Kirk; Thomas D. Kitching; Jean-Paul Kneib; Konrad Kuijken; David Lagatutta; Rachel Mandelbaum; Richard Massey; Y. Mellier; Baback Moghaddam; Yassir Moudden; Reiko Nakajima; Stephane Paulin-Henriksson; Sandrine Pires; A. Rassat; Alexandre Refregier
The GRavitational lEnsing Accuracy Testing 2008 (GREAT08) Challenge focuses on a problem that is of crucial importance for future observations in cosmology. The shapes of distant galaxies can be used to determine the properties of dark energy and the nature of gravity, because light from those galaxies is bent by gravity from the intervening dark matter. The observed galaxy images appear distorted, although only slightly, and their shapes must be precisely disentangled from the effects of pixelisation, convolution and noise. The worldwide gravitational lensing community has made significant progress in techniques to measure these distortions via the Shear TEsting Program (STEP). Via STEP, we have run challenges within our own community, and come to recognise that this particular image analysis problem is ideally matched to experts in statistical inference, inverse problems and computational learning. Thus, in order to continue the progress seen in recent years, we are seeking an infusion of new ideas from these communities. This document details the GREAT08 Challenge for potential participants. Please visit www.great08challenge.info for the latest information.
Monthly Notices of the Royal Astronomical Society | 2006
Pirin Erdogdu; John P. Huchra; Ofer Lahav; Matthew Colless; Roc Michael Cutri; Emilio E. Falco; Teddy George; T. H. Jarrett; D. H. Jones; C. S. Kochanek; Lucas M. Macri; Jeff Mader; Nathalie Martimbeau; Michael Andrew Pahre; Quentin A. Parker; A. Rassat; Will Saunders
We estimate the acceleration on the Local Group (LG) from the 2 Micron All-Sky Redshift Survey (2MRS). The sample used includes about 23 200 galaxies with extinction-corrected magnitudes brighter than Ks= 11.25 and it allows us to calculate the flux-weighted dipole. The near-infrared flux-weighted dipoles are very robust because they closely approximate a mass-weighted dipole, bypassing the effects of redshift distortions and require no preferred reference frame. This is combined with the redshift information to determine the change in dipole with distance. The misalignment angle between the LG and the cosmic microwave background (CMB) dipole drops to 12°± 7° at around 50 h^−1 Mpc, but then increases at larger distances, reaching 21°± 8° at around 130 h^−1 Mpc . Exclusion of the galaxies Maffei 1, Maffei 2, Dwingeloo 1, IC342 and M87 brings the resultant flux dipole to 14°± 7° away from the CMB velocity dipole. In both cases, the dipole seemingly converges by 60 h^−1 Mpc. Assuming convergence, the comparison of the 2MRS flux dipole and the CMB dipole provides a value for the combination of the mass density and luminosity bias parameters Ω0.6m/bL= 0.40 ± 0.09.
Space Science Reviews | 2015
Benjamin Joachimi; Marcello Cacciato; Thomas D. Kitching; Adrienne Leonard; Rachel Mandelbaum; Björn Malte Schäfer; Cristóbal Sifón; Henk Hoekstra; Alina Kiessling; D. Kirk; A. Rassat
The alignments between galaxies, their underlying matter structures, and the cosmic web constitute vital ingredients for a comprehensive understanding of gravity, the nature of matter, and structure formation in the Universe. We provide an overview on the state of the art in the study of these alignment processes and their observational signatures, aimed at a non-specialist audience. The development of the field over the past one hundred years is briefly reviewed. We also discuss the impact of galaxy alignments on measurements of weak gravitational lensing, and discuss avenues for making theoretical and observational progress over the coming decade.
Monthly Notices of the Royal Astronomical Society | 2012
D. Kirk; A. Rassat; Ole Host; Sarah Bridle
We consider the effect of galaxy intrinsic alignments (IAs) on dark energy constraints from weak gravitational lensing. We summarize the latest version of the linear alignment model of IAs, following a brief note of Hirata & Seljak and further interpretation by Laszlo et al. We show the cosmological bias on the dark energy equation of state parameters w0 and wa
Space Science Reviews | 2015
D. Kirk; Michael L. Brown; Henk Hoekstra; Benjamin Joachimi; Thomas D. Kitching; Rachel Mandelbaum; Cristóbal Sifón; Marcello Cacciato; Ami Choi; Alina Kiessling; Adrienne Leonard; A. Rassat; Björn Malte Schäfer
that would occur if IAs were ignored. We find that w0 and wa are both catastrophically biased, by an absolute value of just greater than unity under the Fisher matrix approximation. This contrasts with a bias several times larger for the earlier IA implementation. Therefore, there is no doubt that IAs must be taken into account for future stage III experiments and beyond. We use a flexible grid of IA and galaxy bias parameters as used in previous work and investigate what would happen if the Universe is described by used the latest IA model, but we assumed the earlier version. We find that despite the large difference between the two IA models, the grid flexibility is sufficient to remove cosmological bias and recover the correct dark energy equation of state. In an appendix, we compare observed shear power spectra to those from a popular previous implementation and explain the differences.
Space Science Reviews | 2015
Alina Kiessling; Marcello Cacciato; Benjamin Joachimi; D. Kirk; Thomas D. Kitching; Adrienne Leonard; Rachel Mandelbaum; Björn Malte Schäfer; Cristóbal Sifón; Michael L. Brown; A. Rassat
Galaxy shapes are not randomly oriented, rather they are statistically aligned in a way that can depend on formation environment, history and galaxy type. Studying the alignment of galaxies can therefore deliver important information about the physics of galaxy formation and evolution as well as the growth of structure in the Universe. In this review paper we summarise key measurements of galaxy alignments, divided by galaxy type, scale and environment. We also cover the statistics and formalism necessary to understand the observations in the literature. With the emergence of weak gravitational lensing as a precision probe of cosmology, galaxy alignments have taken on an added importance because they can mimic cosmic shear, the effect of gravitational lensing by large-scale structure on observed galaxy shapes. This makes galaxy alignments, commonly referred to as intrinsic alignments, an important systematic effect in weak lensing studies. We quantify the impact of intrinsic alignments on cosmic shear surveys and finish by reviewing practical mitigation techniques which attempt to remove contamination by intrinsic alignments.
Astronomy and Astrophysics | 2012
François Lanusse; A. Rassat; Jean-Luc Starck
The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These “intrinsic galaxy alignments” are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N
Monthly Notices of the Royal Astronomical Society | 2010
Sarah Bridle; Sreekumar T. Balan; Matthias Bethge; Marc Gentile; Stefan Harmeling; Catherine Heymans; Michael Hirsch; Reshad Hosseini; M. Jarvis; D. Kirk; Thomas D. Kitching; Konrad Kuijken; Antony Lewis; Stephane Paulin-Henriksson; Bernhard Schölkopf; Malin Velander; Lisa Voigt; Dugan Witherick; Adam Amara; G. M. Bernstein; F. Courbin; M. S. S. Gill; Alan Heavens; Rachel Mandelbaum; Richard Massey; Baback Moghaddam; A. Rassat; Alexandre Refregier; Jason Rhodes; Tim Schrabback
N