Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Santagata.
Journal of Analytical Atomic Spectrometry | 2004
Violeta Lazic; R. Fantoni; Francesco Colao; A. Santagata; Antonio Morone; Valeria Spizzichino
White marble samples from ancient quarries have been analyzed by Laser Induced Breakdown Spectroscopy (LIBS) both on the bulk material and surface encrustations. With the aim to achieve quantitative results by LIBS, until now not reported on marble materials, calibration standards with CaCO3 matrices doped with certified soils were realized. Very different emission intensities and plasma parameters were observed on the standards and natural marbles. In order to compare so different spectra, a method for data analysis was developed, which takes into account variability of the ablation rate, plasma temperature and electron density. It was experimentally demonstrated that ablated volume is well correlated to the emission intensity of plasma continuum for a wide range of laser energies. LIBS signal normalization on the adjacent continuum level, together with introduction of correction factors dependent on plasma parameters, allowed the measuring of concentrations both for major and trace elements in marbles. The analytical procedure was validated by comparative SEM-EDX and ICP-OES measurements. Quantitative LIBS analyses were also performed during encrustation removal and could be applied to control laser-cleaning processes. The quantification of metal contents in the encrustations supported the occurrence of sulfates in the outer layers exposed to environmental agents via a catalytic process.
Physical Chemistry Chemical Physics | 2013
Gabriele C. Messina; Philipp Wagener; René Streubel; Alessandro De Giacomo; A. Santagata; Giuseppe Compagnini; Stephan Barcikowski
Using wires of defined diameters instead of a planar target for pulsed laser ablation in liquid results in significant increase of ablation efficiency and nanoparticle productivity up to a factor of 15. We identified several competitive phenomena based on thermal conductivity, reflectivity and cavitation bubble shape that affect the ablation efficiency when the geometry of the target is changed. On the basis of the obtained results, this work represents an intriguing starting point for further developments related to the up-scaling of pulsed laser ablation in liquid environments at the industrial level.
Journal of Physical Chemistry A | 2009
R. Teghil; Luciano D’Alessio; Angela De Bonis; A. Galasso; Neluta Ibris; Anna Maria Salvi; A. Santagata; P. Villani
The ultrashort pulsed laser deposition of vanadium oxide thin films has been carried out by a frequency-doubled Nd:glass laser with a pulse duration of 250 fs. The characteristics of the plasma produced by the laser-target interaction have been studied by ICCD imaging and optical emission spectroscopy. The results confirm that an emitting plasma produced by ultrashort laser pulses is formed by both a primary and a secondary component. The secondary component consists of particles with a nanometric size, and their composition and spatial angular distribution influence the deposited films. In fact, these films, analyzed by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, and atomic force microscopy, are formed by the aggregation of a large number of nanoparticles whose composition is explained by a model based on equilibrium thermal evaporation from particles directly ejected from the target. On these basis, the presence in the films of a mixture of V(2)O(5) and VO(2) is discussed.
Journal of Physics D | 2013
A De Bonis; M. Sansone; L. D'Alessio; A. Galasso; A. Santagata; R. Teghil
In this work, the dynamics of multiple cavitation bubbles produced by femtosecond laser ablation of a palladium target submerged in acetone is studied by means of time-resolved fast shadowgraphy technique. The data have evidenced the periodic growth and collapse of the bubbles and the consequent emission of material together with the role played by the laser focus position. Comparing the results with the previsions of the Rayleigh–Plesset model a good agreement is found. The nanoparticles obtained under different focusing conditions are characterized by means of TEM analysis. Their dimension and distribution are correlated with the bubbles dynamics.
Applied Surface Science | 2001
L. D’Alessio; D. Ferro; V. Marotta; A. Santagata; R. Teghil; M. Zaccagnino
Abstract A study of the laser ablation and deposition, on Ti6Al4V substrates, of a biological active glass (Bioglass ® 45S5) is reported. The gaseous phase composition has been determined by laser ablation inductively coupled plasma mass spectrometry, optical imaging and emission spectroscopy. The deposited films were studied by scanning electron microscopy coupled with energy and wavelength dispersive X-ray analysis and X-ray diffraction. The adhesion of films to the substrates has been studied by scratch tests. Moreover, after exposing the coatings to a simulating body fluid solution, their bioactivity has been monitored by X-ray diffraction analysis of the hydroxylapatite growth. This procedure has been followed for different time scales up to a maximum of 24 days. The deposition mechanism seems to be related mainly to the mechanical transport of the target material in form of droplets, while the gaseous phase, having a very different composition, plays a marginal role. The overall film retains the target stoichiometry and bioactivity in a large range of experimental conditions.
Applied Surface Science | 1997
A. Santagata; V. Marotta; L D'Alessio; R. Teghil; D. Ferro; G. DeMaria
The gaseous phase of laser ablated TiC target has been analyzed by time of flight mass spectrometry and optical emission spectroscopy. Various molecular clusters TinCm, with n ranging from 1 to 4 and m from 1 to 5, are observed and the excited atoms emission spectrum is determined, together with the electronic temperature of the plume. The angular distribution of the material ejected from the target is also discussed.
Journal of Physical Chemistry A | 2009
L. Fornarini; R. Fantoni; Francesco Colao; A. Santagata; R. Teghil; Asmaa Elhassan; M.A. Harith
A model, formerly proposed and utilized to understand the formation of laser induced breakdown spectroscopy (LIBS) plasma upon irradiation with nanosecond laser pulses at different fluences and wavelengths, has been extended to the irradiation with femtosecond laser pulses in order to control the fractionation mechanisms which heavily affect the application of laser-ablation-based microanalytical techniques. The model takes into account the different chemico-physical processes occurring during the interaction of an ultrashort laser pulse with a metallic surface. In particular, a two-temperature description, relevant to the electrons and lattice of the substrate, respectively, has been introduced and applied to different ternary and quaternary copper-based alloys subjected to fs and ns ablation both in the visible (527 nm) and in the UV (248 nm). The model has been found able to reproduce the shorter plasma duration experimentally found upon fs laser ablation. Kinetic decay times of several copper (major element) emission lines have been examined together with those relevant to the main plasma parameters. The plasma experimental temperature, derived assuming a Boltzmann distribution, and the electron density following the Saha equation have been compared with the corresponding theoretical data. A satisfactory description of plasma parameters and main matrix constituent composition has been obtained in the time window where local thermal equilibrium was assumed for LIBS data analysis. Improved analytical capabilities are predicted upon delayed detection of plasma emission in femtosecond LIBS, in relation to the better LOD achieved and to the improved data reproducibility expected. Results support the utilization of ultrafast laser sources for trace detection, despite the residual fractionation occurring in the examined range of fluences which affects the linearity of experimental calibration curves built for tin and lead after internal standardization on copper. The validation of model results by experimental data allowed highlighting, from first principles, of the ablation mechanisms for the two temporal regimes and information on how this affects the accurate microanalysis of Cu-based alloys.
Physica Scripta | 2008
R. Teghil; A. Santagata; A De Bonis; G. Albano; P. Villani; D. Spera; G.P. Parisi; A. Galasso
In this paper, we report a survey of two of the large number of possible practical applications of the laser ablation performed by an ultra-short pulse laser, namely pulsed laser deposition (PLD) and fs/ns dual-pulse laser-induced breakdown spectroscopy (DP-LIBS). These applications differ from those using just longer pulsed lasers as a consequence of the distinctive characteristics of the plasma produced by ultra-short laser beams. The most important feature of this plasma is the large presence of particles with nanometric size which plays a fundamental role in both applications.
Journal of Colloid and Interface Science | 2017
Angela De Bonis; A. Santagata; A. Galasso; Alessandro Laurita; R. Teghil
Laser ablation of bulk target in liquid allows to obtain stable nanoparticles and nanostructures, also in metastable phases, limiting the use of hazardous reagents and extreme reaction conditions. Titanium carbide (TiC) is a ceramic compound with several technological applications ranging from biocompatible materials to wear resistant coatings. The possibility to obtain core/shell structures expands its range of application due to the ability of modify the surface properties of the core ceramic material. TiC and metallic titanium targets have been ablated by means of an ultra-short laser source in different liquid media (water, acetone, n-hexane and toluene). The obtained colloidal solutions have been characterized by TEM, XRD and micro-Raman analysis. In all the used experimental conditions TiC nanoparticles have been produced. During water and acetone mediated ablations, the oxidation of titanium has been observed, whereas by using oxygen free solvents, such as n-hexane and toluene, core/shell TiC nanoparticles embedded in amorphous and graphitic carbon shell, respectively, have been obtained.
ChemPhysChem | 2017
M. Dell'Aglio; A. Santagata; Gabriele Valenza; Angelo De Stradis; Alessandro De Giacomo
In this work the effects of the pressure between 1-150 Bar on pulsed laser ablation in liquids (PLAL) during the production of silver nanoparticles (AgNPs) in water was investigated. The produced NPs are the results of two different well-known stages which are the plasma and the bubble evolution occurring until the generated material is released into the solution. The main aim of this work is to show which roles is played by the variation of water pressure on the laser induced plasma and the cavitation bubble dynamics during the NPs formation. Their implication on the comprehension of the as-produced NPs formation mechanisms is treated. The typical timescales of the different stages occurring in water at different pressures have been studied by optical emission spectroscopy (OES), imaging and shadowgraph experiments. Finally surface plasmon resonance (SPR) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS) and scanning electron microscopy (SEM) for characterization of the material released in solution, have been used.