Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Stravato is active.

Publication


Featured researches published by A. Stravato.


Medical Physics | 2015

Evaluation of a synthetic single-crystal diamond detector for relative dosimetry on the Leksell Gamma Knife Perfexion radiosurgery system

P. Mancosu; G. Reggiori; A. Stravato; Anna Gaudino; F. Lobefalo; V. Palumbo; Piera Navarria; Anna Maria Ascolese; Piero Picozzi; M. Marinelli; G. Verona-Rinati; S. Tomatis; M. Scorsetti

PURPOSE To evaluate the new commercial PTW-60019 synthetic single-crystal microDiamond detector (PTW, Freiburg, Germany) for relative dosimetry measurements on a clinical Leksell Gamma Knife Perfexion radiosurgery system. METHODS Detector output ratios (DORs) for 4 and 8 mm beams were measured using a microDiamond (PTW-60019), a stereotactic unshielded diode [IBA stereotactic field detector (SFD)], a shielded diode (IBA photon field detector), and GafChromic EBT3 films. Both parallel and transversal acquisition directions were considered for PTW-60019 measurements. Measured DORs were compared to the new output factor reference values for Gamma Knife Perfexion (0.814 and 0.900 for 4 and 8 mm, respectively). Profiles in the three directions were also measured for the 4 mm beam to evaluate full width at half maximum (FWHM) and penumbra and to compare them with the corresponding Leksell GammaPlan profiles. RESULTS FWHM and penumbra for PTW-60019 differed from the calculated values by less than 0.2 and 0.3 mm, for the parallel and transversal acquisitions, respectively. GafChromic films showed FWHM and penumbra within 0.1 mm. The output ratio obtained with the PTW-60019 for the 4 mm field was 1.6% greater in transverse direction compared to the nominal value. Comparable differences up to 0.8% and 1.0% for, respectively, GafChromic films and SFD were found. CONCLUSIONS The microDiamond PTW-60019 is a suitable detector for commissioning and routine use of Gamma Knife with good agreement of both DORs and profiles in the three directions.


Physica Medica | 2016

Characterization of a new unshielded diode for small field dosimetry under flattening filter free beams

G. Reggiori; P. Mancosu; Natalka Suchowerska; F. Lobefalo; A. Stravato; S. Tomatis; M. Scorsetti

PURPOSE To characterize the performance of a new unshielded silicon diode (Razor-IBA) for dose measurements in small flattening filter free beams. METHODS The Razor has an active volume of 0.6 mm in diameter and 20 µm in length. The detector response stability in measured dose, dose rate, dose per pulse, and dark current were evaluated. The detector response in square fields (0.6-5.0 cm) was determined using PDD curves, axial beam profiles and output ratios. The performances were compared to that of the previously available SFD-IBA and PFD-IBA diodes. RESULTS AND DISCUSSION The Razor short term stability relative to the SFD was much improved (<±0.1% after 1.2 kGy). The linearity was <±1% (0.05-30 Gy range) and the dose rate dependence was <±0.5% (4-24 Gy/min range). The dose per pulse dependence was <±0.7% (0.08-0.21 cGy/pulse range). The PDDs measured with Razor and PFD differed <1%. A larger dark current was observed with increase in dose (0.0025 pA/Gy) compared to the SFD (0.0002 pA/Gy). This characteristic is attributed to an increased concentration of recombination centers. The beam profile showed good agreement with the SFD. Penumbra differences were <±0.3 mm relative to PFD, with a slight overestimation of the tails (<1%), due to the absence of diode shielding. Output ratios were in good agreement for fields up to 5 × 5 cm(2) (<1%). CONCLUSIONS The Razor diode has the same spatial resolution and performance reliability as its predecessor (SFD), but exhibits the additional advantage of improved stability. These features make the Razor diode detector a good candidate for small field dosimetry.


Physics in Medicine and Biology | 2017

Is the PTW 60019 microDiamond a suitable candidate for small field reference dosimetry

Vanessa De Coste; Paolo Francescon; M. Marinelli; Laura Masi; Lucia Paganini; M. Pimpinella; G. Prestopino; S. Russo; A. Stravato; C. Verona; G. Verona-Rinati

A systematic study of the PTW microDiamond (MD) output factors (OF) is reported, aimed at clarifying its response in small fields and investigating its suitability for small field reference dosimetry. Ten MDs were calibrated under 60Co irradiation. OF measurements were performed in 6 MV photon beams by a CyberKnife M6, a Varian DHX and an Elekta Synergy linacs. Two PTW silicon diodes E (Si-D) were used for comparison. The results obtained by the MDs were evaluated in terms of absorbed dose to water determination in reference conditions and OF measurements, and compared to the results reported in the recent literature. To this purpose, the Monte Carlo (MC) beam-quality correction factor, [Formula: see text], was calculated for the MD, and the small field output correction factors, [Formula: see text], were calculated for both the MD and the Si-D by two different research groups. An empirical function was also derived, providing output correction factors within 0.5% from the MC values calculated for all of the three linacs. A high reproducibility of the dosimetric properties was observed among the ten MDs. The experimental [Formula: see text] values are in agreement within 1% with the MC calculated ones. Output correction factors within  +0.7% and  -1.4% were obtained down to field sizes as narrow as 5 mm. The resulting MD and Si-D field factors are in agreement within 0.2% in the case of CyberKnife measurements and 1.6% in the other cases. This latter higher spread of the data was demonstrated to be due to a lower reproducibility of small beam sizes defined by jaws or multi leaf collimators. The results of the present study demonstrate the reproducibility of the MD response and provide a validation of the MC modelling of this device. In principle, accurate reference dosimetry is thus feasible by using the microDiamond dosimeter for field sizes down to 5 mm.


Medical Physics | 2016

Evaluation of the dose calculation accuracy for small fields defined by jaw or MLC for AAA and Acuros XB algorithms

Antonella Fogliata; F. Lobefalo; G. Reggiori; A. Stravato; S. Tomatis; M. Scorsetti; Luca Cozzi

PURPOSE Small field measurements are challenging, due to the physical characteristics coming from the lack of charged particle equilibrium, the partial occlusion of the finite radiation source, and to the detector response. These characteristics can be modeled in the dose calculations in the treatment planning systems. Aim of the present work is to evaluate the MU calculation accuracy for small fields, defined by jaw or MLC, for anisotropic analytical algorithm (AAA) and Acuros XB algorithms, relative to output measurements on the beam central axis. METHODS Single point output factor measurement was acquired with a PTW microDiamond detector for 6 MV, 6 and 10 MV unflattened beams generated by a Varian TrueBeam STx equipped with high definition-MLC. Fields defined by jaw or MLC apertures were set; jaw-defined: 0.6 × 0.6, 0.8 × 0.8, 1 × 1, 2 × 2, 3 × 3, 4 × 4, 5 × 5, and 10 × 10 cm2; MLC-defined: 0.5 × 0.5 cm2 to the maximum field defined by the jaw, with 0.5 cm stepping, and jaws set to: 2 × 2, 3 × 3, 4 × 4, 5 × 5, and 10 × 10 cm2. MU calculation was obtained with 1 mm grid in a virtual water phantom for the same fields, for AAA and Acuros algorithms implemented in the Varian eclipse treatment planning system (version 13.6). Configuration parameters as the effective spot size (ESS) and the dosimetric leaf gap (DLG) were varied to find the best parameter setting. Differences between calculated and measured doses were analyzed. RESULTS Agreement better than 0.5% was found for field sizes equal to or larger than 2 × 2 cm2 for both algorithms. A dose overestimation was present for smaller jaw-defined fields, with the best agreement, averaged over all the energies, of 1.6% and 4.6% for a 1 × 1 cm2 field calculated by AAA and Acuros, respectively, for a configuration with ESS = 1 mm for both X and Y directions for AAA, and ESS = 1.5 and 0 mm for X and Y directions for Acuros. Conversely, a calculated dose underestimation was found for small MLC-defined fields, with the best agreement averaged over all the energies, of -3.9% and 0.2% for a 1 × 1 cm2 field calculated by AAA and Acuros, respectively, for a configuration with ESS = 0 mm for both directions and both algorithms. CONCLUSIONS For optimal setting applied in the algorithm configuration phase, the agreement of Acuros calculations with measurements could achieve the 3% for MLC-defined fields as small as 0.5 × 0.5 cm2. Similar agreement was found for AAA for fields as small as 1 × 1 cm2.


Medical Dosimetry | 2016

Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study

P. Mancosu; Antonella Fogliata; A. Stravato; S. Tomatis; Luca Cozzi; M. Scorsetti

Frameless stereotactic radiosurgery (SRS) requires dedicated systems to monitor the patient position during the treatment to avoid target underdosage due to involuntary shift. The optical surface monitoring system (OSMS) is here evaluated in a phantom-based study. The new EDGE linear accelerator from Varian (Varian, Palo Alto, CA) integrates, for cranial lesions, the common cone beam computed tomography (CBCT) and kV-MV portal images to the optical surface monitoring system (OSMS), a device able to detect real-time patient׳s face movements in all 6 couch axes (vertical, longitudinal, lateral, rotation along the vertical axis, pitch, and roll). We have evaluated the OSMS imaging capability in checking the phantoms׳ position and monitoring its motion. With this aim, a home-made cranial phantom was developed to evaluate the OSMS accuracy in 4 different experiments: (1) comparison with CBCT in isocenter location, (2) capability to recognize predefined shifts up to 2° or 3cm, (3) evaluation at different couch angles, (4) ability to properly reconstruct the surface when the linac gantry visually block one of the cameras. The OSMS system showed, with a phantom, to be accurate for positioning in respect to the CBCT imaging system with differences of 0.6 ± 0.3mm for linear vector displacement, with a maximum rotational inaccuracy of 0.3°. OSMS presented an accuracy of 0.3mm for displacement up to 1cm and 1°, and 0.5mm for larger displacements. Different couch angles (45° and 90°) induced a mean vector uncertainty < 0.4mm. Coverage of 1 camera produced an uncertainty < 0.5mm. Translations and rotations of a phantom can be accurately detect with the optical surface detector system.


British Journal of Radiology | 2015

Are pitch and roll compensations required in all pathologies? A data analysis of 2945 fractions

P. Mancosu; G. Reggiori; Anna Gaudino; F. Lobefalo; Lucia Paganini; V. Palumbo; A. Stravato; S. Tomatis; M. Scorsetti

OBJECTIVE New linear accelerators can be equipped with a 6D robotic couch, providing two additional rotational motion axes: pitch and roll. These shifts in kilo voltage-cone beam CT (kV-CBCT) image-guided radiotherapy (IGRT) were evaluated over the first 6 months of usage of a 6D robotic couch-top, ranking the treatment sites for which the two compensations are larger for patient set-up. METHODS The couch compensations of 2945 fractions for 376 consecutive patients treated on the PerfectPitch™ 6D couch (Varian(®) Medical Systems, Palo Alto, CA) were analysed. Among these patients, 169 were treated for brain, 111 for lung, 54 for liver, 26 for pancreas and 16 for prostate tumours. During the set-up, patient anatomy from planning CT was aligned to kV-CBCT, and 6D movements were executed. Information related to pitch and roll were extracted by proper querying of the Microsoft(®) SQL server (Microsoft Corporation, Redmond, WA) ARIA database (Varian Medical Systems). Mean values and standard deviations were calculated for all sites. Kolmogorov-Smirnov (KS) test was performed. RESULTS Considering all the data, mean pitch and roll adjustments were -0.10° ± 0.92° and 0.12° ± 0.96°, respectively; mean absolute values for both adjustments were 0.58° ± 0.69° and 0.69° ± 0.72°, respectively. Brain treatments showed the highest mean absolute values for pitch and roll rotations (0.73° ± 0.69° and 0.80° ± 0.78°, respectively); the lowest values of 0.36° ± 0.47° and 0.49° ± 0.58° were found for pancreas. KS test was significant for brain vs liver, pancreas and prostate. Collective corrections (pitch + roll) >0.5°, >1.0° and >2.0° were observed in, respectively, 79.8%, 61.0% and 29.1% for brain and 56.7%, 39.4% and 6.7% for pancreas. CONCLUSION Adjustments in all six dimensions, including unconventional pitch and roll rotations, improve the patient set-up in all treatment sites. The greatest improvement was observed for patients with brain tumours. ADVANCES IN KNOWLEDGE To our knowledge, this is the first systematic evaluation of the clinical efficacy of a 6D Robotic couch-top in CBCT IGRT over different tumour regions.


Physica Medica | 2017

Use of PTW-microDiamond for relative dosimetry of unflattened photon beams

G. Reggiori; A. Stravato; M. Pimpinella; F. Lobefalo; Vanessa De Coste; Antonella Fogliata; P. Mancosu; Fiorenza De Rose; V. Palumbo; M. Scorsetti; S. Tomatis

PURPOSE The increasing interest in SBRT treatments encourages the use of flattening filter free (FFF) beams. Aim of this work was to evaluate the performance of the PTW60019 microDiamond detector under 6MV and 10MVFFF beams delivered with the EDGE accelerator (Varian Medical System, Palo Alto, USA). A flattened 6MV beam was also considered for comparison. METHODS Short term stability, dose linearity and dose rate dependence were evaluated. Dose per pulse dependence was investigated in the range 0.2-2.2mGy/pulse. MicroDiamond profiles and output factors (OFs) were compared to those obtained with other detectors for field sizes ranging from 40×40cm2 to 0.6×0.6cm2. In small fields, volume averaging effects were evaluated and the relevant correction factors were applied for each detector. RESULTS MicroDiamond short term stability, dose linearity and dependence on monitor unit rate were less than 0.8% for all energies. Response variations with dose per pulse were found within 1.8%. MicroDiamond output factors (OF) values differed from those measured with the reference ion-chamber for less than 1% up to 40×40cm2 fields where silicon diodes overestimate the dose of ≈3%. For small fields (<3×3cm2) microDiamond and the unshielded silicon diode were in good agreement. CONCLUSIONS MicroDiamond showed optimal characteristics for relative dosimetry even under high dose rate beams. The effects due to dose per pulse dependence up to 2.2mGy/pulse are negligible. Compared to other detectors, microDiamond provides accurate OF measurements in the whole range of field sizes. For fields <1cm correction factors accounting for fluence perturbation and volume averaging could be required.


Physica Medica | 2017

Small field characterization of a Nanochamber prototype under flattening filter free photon beams

G. Reggiori; A. Stravato; P. Mancosu; F. Lobefalo; L. Paganini; F. Zucconi; V. Palumbo; Anna Gaudino; M. Scorsetti; S. Tomatis

INTRODUCTION Nanochambers present some advantages in terms of energy independence and absolute dose measurement for small field dosimetry in the SBRT scenario. Characterization of a micro-chamber prototype was carried out both under flattened and flattening-filter-free (FFF) beams with particular focus on stem effect. METHODS The study included characterization of leakage and stem effects, dose rate and dose per pulse dependence, measurement of profiles, and percentage depth doses (PDDs). Ion collection efficiency and polarity effects were measured and evaluated against field size and dose per pulse. The 6_MV, 6_MV_FFF and 10_MV FFF beams of a Varian EDGE were used. Output factors were measured for field sizes ranging from 0.8×0.8cm2 to 20×20cm2 and were compared with other detectors. RESULTS The 2mm diameter of this chamber guarantees a high spatial resolution with low penumbra values. In orthogonal configuration a strong stem (and cable) effect was observed for small fields. Dose rate and dose per pulse dependence were <0.3% and 0.6% respectively for the whole range of considered values. The Nanochamber exhibits a field size (FS) dependence of the polarity correction >2%. The OF values were compared with other small field detectors showing a good agreement for field sizes >2×2cm2. The large field over-response was corrected applying kpol(FS). CONCLUSIONS Nanochamber is an interesting option for small field measurements. The spherical shape of the active volume is an advantage in terms of reduced angular dependence. An interesting feature of the Nanochamber is its beam quality independence and, as a future development, the possibility to use it for small field absolute dosimetry.


Journal of Applied Clinical Medical Physics | 2018

On the gEUD biological optimization objective for organs at risk in Photon Optimizer of Eclipse treatment planning system

Antonella Fogliata; Stephen Thompson; A. Stravato; S. Tomatis; M. Scorsetti; Luca Cozzi

Abstract Inverse planning optimization using biologically based objectives is becoming part of the intensity modulated optimization process. The performances and efficacy of the biologically based gEUD (generalized Equivalent Uniform Dose) objective implemented in the Photon Optimizer (PO) of Varian Eclipse treatment planning system have been here analyzed. gEUD is associated with the parameter a that accounts for the seriality of a structure, being higher for more serial organs. The PO was used to optimize volumetric modulated arc therapy (VMAT) plans on a virtual homogeneous cylindrical phantom presenting a target and an organ at risk (OAR). The OAR was placed at 4 mm, 1 and 2 cm distance, or cropped at 0, 2 and 4 mm from the target. Homogeneous target dose of 60 Gy in 20 fractions was requested with physical dose‐volume objectives, while OAR dose was minimized with the upper gEUD objective. The gEUD specific a parameter was varied from 0.1 to 40 to assess its impact to OAR sparing and target coverage. Actual head and neck and prostate cases, with one parotid and the rectum as test OAR, were also analyzed to translate the results in the more complex clinical environment. Increasing the a parameter value in the gEUD objective, the optimization achieved lower volumes of the OAR which received the highest dose levels. The maximum dose in the OAR was minimized well with a values up to 20, while further increase of a to 40 did not further improve the result. The OAR mean dose was reduced for the OAR located at 1 and 2 cm distance from the target, enforced with increasing a. For cropped OARs, a mean dose reduction was achieved for a values up to 3–5, but mean dose increased for higher a values. The optimal choice of the parameter a depends on the mutual OAR and target position, and seriality of the organ. Today no significant compendium of clinical and biological specific a and gEUD values are available for a wide range of OARs.


Radiation Oncology | 2018

Evaluation of target dose inhomogeneity in breast cancer treatment due to tissue elemental differences

Antonella Fogliata; F. De Rose; A. Stravato; G. Reggiori; S. Tomatis; M. Scorsetti; Luca Cozzi

BackgroundMonte Carlo simulations were run to estimate the dose variations generated by thedifference arising from the chemical composition of the tissues.MethodsCT datasets of five breast cancer patients were selected. Mammary gland was delineated as clinical target volume CTV, as well as CTV_lob and CTV_fat, being the lobular and fat fractions of the entire mammary gland. Patients were planned for volumetric modulated arc therapy technique, optimized in the Varian Eclipse treatment planning system. CT, structures and plans were imported in PRIMO, based on Monte Carlo code Penelope, to run three simulations: AdiMus, where the adipose and muscle tissues were automatically assigned to fat and lobular fractions of the breast; Adi and Mus, where adipose and muscle, respectively were assigned to the whole mammary gland. The specific tissue density was kept identical from the CT dataset. Differences in mean doses in the CTV_lob and CTV_fat structures were evaluated for the different tissue assignments. Differences generated by the tissue composition and estimated by Acuros dose calculations in Eclipse were also analysed.ResultsFrom Monte Carlo simulations, the dose in the lobular fraction of the breast, when adipose tissue is assigned in place of muscle, is overestimated by 1.25 ± 0.45%; the dose in the fat fraction of the breast with muscle tissue assignment is underestimated by 1.14 ± 0.51%. Acuros showed an overestimation of 0.98 ± 0.06% and an underestimation of 0.21 ± 0.14% in the lobular and fat portions, respectively. Reason of this dissimilarity resides in the fact that the two calculations, Monte Carlo and Acuros, differently manage the range of CT numbers and the material assignments, having Acuros an overlapping range, where two tissues are both present in defined proportions.ConclusionAlthough not clinically significant, the dose deposition difference in the lobular and connective fat fraction of the breast tissue lead to an improved knowledge of the possible dose distribution and homogeneity in the breast radiation treatment.

Collaboration


Dive into the A. Stravato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge