Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. V. Vershubskii is active.

Publication


Featured researches published by A. V. Vershubskii.


Biochimica et Biophysica Acta | 2011

Regulation of electron transport in C3 plant chloroplasts in situ and in silico: Short-term effects of atmospheric CO2 and O2

Ilya V. Kuvykin; Vasily V. Ptushenko; A. V. Vershubskii; Alexander N. Tikhonov

In this work, we have investigated the effects of atmospheric CO(2) and O(2) on induction events in Hibiscus rosa-sinensis leaves. These effects manifest themselves as multiphase kinetics of P(700) redox transitions and non-monotonous changes in chlorophyll fluorescence. Depletion of CO(2) and O(2) in air causes a decrease in linear electron flux (LEF) and dramatic lowering of P(700)(+) level. This is explained by the impediment to electron efflux from photosystem 1 (PS1) at low acceptor capacity. With the release of the acceptor deficit, the rate of LEF significantly increases. We have found that oxygen promotes the outflow of electrons from PS1, providing the rise of P(700)(+) level. The effect of oxygen as an alternative electron acceptor becomes apparent at low and ambient concentrations of atmospheric CO(2) < or = 0.06-0.07%). A decrease in LEF at low CO(2) is accompanied by a significant (about 3-fold) rise of non-photochemical quenching (NPQ) of chlorophyll fluorescence. Such an increase in NPQ can be explained by more significant acidification of the thylakoid lumen. This occurs due to lessening the proton flux through the ATP synthases caused by a decrease in the ATP consumption in the Bassham-Benson-Calvin (BBC) cycle. pH-dependent mechanisms of electron transport control have been described within the frames of our mathematical model. The model describes the reciprocal changes in LEF and NPQ and predicts the redistribution of electron fluxes on the acceptor side of PS1. In particular, the contribution of cyclic electron flow around PS1 (CEF1) and water-water cycle gradually decays during the induction phase. This result is consistent with experimental data indicating that under the steady-state conditions the contribution of CEF1 to photosynthetic electron transport in Hibiscus rosa-sinensis is insignificant (< or = 10%).


Biochemistry | 2008

Oxygen as an alternative electron acceptor in the photosynthetic electron transport chain of C3 plants

Ilya V. Kuvykin; A. V. Vershubskii; Vasily V. Ptushenko; Alexander N. Tikhonov

This study deals with effects of oxygen on the kinetics of P700 photoinduced redox transitions and on induction transients of chlorophyll fluorescence in leaves of C3 plants Hibiscus rosa-sinensis and Vicia faba. It is shown that the removal of oxygen from the leaf environment has a conspicuous effect on photosynthetic electron transport. Under anaerobic conditions, the concentration of oxidized P700 centers in continuous white light was substantially lower than under aerobic conditions. The deficiency of oxygen released non-photochemical quenching of chlorophyll fluorescence, thus indicating a decrease in the trans-thylakoid pH gradient (ΔpH). Quantitative analysis of experimental data within the framework of an original mathematical model has shown that the steady-state electron flux toward oxygen in Chinese hibiscus leaves makes up to ∼40% of the total electron flow passing through photosystem 1 (PS1). The decrease in P700+ content under anaerobic conditions can be due to two causes: i) the retardation of electron outflow from PS1, and ii) the release of photosynthetic control (acceleration of electron flow from PS2 to P700+) owing to lower acidification of the intra-thylakoid space. At the same time, cyclic electron transport around PS1 was not stimulated in the oxygen-free medium, although such stimulation seemed likely in view of possible rearrangement of electron flows on the acceptor side of PS1. This conclusion stems from observations that the rates of P700+ reduction in DCMU-poisoned samples, both under aerobic and anaerobic conditions, were negligibly small compared to rates of electron flow from PS2 toward P700+ in untreated samples.


BioSystems | 2011

Functional and topological aspects of pH-dependent regulation of electron and proton transport in chloroplasts in silico

A. V. Vershubskii; Ilya V. Kuvykin; V. I. Priklonskii; Alexander N. Tikhonov

In this work, we summarize results of computer simulation of electron and proton transport processes coupled to ATP synthesis in chloroplasts performed within the frames of a mathematical model developed as a system of differential equations for concentrations of electron carriers and hydrogen ion inside and outside the granal and stromal thylakoids. The model takes into account topological peculiarities and lateral heterogeneity of the chloroplast lamellar system. This allowed us to analyze the influence of restricted diffusion of protons inside small compartments of a chloroplast (e.g., in the narrow inter-thylakoid gap) on electron transport processes. The model adequately describes two modes of pH-dependent feedback control of electron transport associated with: (i) the acidification of the thylakoid lumen, which causes the slowing down of plastoquinol oxidation and stimulates an increase in dissipation of excess energy in PS2, and (ii) the alkalization of stroma, inducing the activation of the BBC (Bassham-Benson-Calvin) cycle and intensified consumption of ATP and NADPH. The influence of ATP on electron transport is mediated by modulation of the thylakoid membrane conductivity to protons through the ATP synthase complexes. We also analyze the contribution of alternative electron transport pathways to the maintenance of optimal balance between the energy donating and energy consuming stages of the light-induced photosynthetic processes.


BioSystems | 2014

Computer modeling of electron and proton transport in chloroplasts

Alexander N. Tikhonov; A. V. Vershubskii

Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of chloroplasts and lateral heterogeneity of lamellar system of thylakoids. The lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids have been calculated under different metabolic conditions. Analyzing topological aspects of diffusion-controlled stages of electron and proton transport in chloroplasts, we conclude that along with the NPQ mechanism of attenuation of PSII activity and deceleration of PQH2 oxidation by the cytochrome b6f complex caused by the lumen acidification, the intersystem electron transport may be down-regulated due to the light-induced alkalization of the narrow partition between adjacent thylakoids of grana. The computer models of electron and proton transport described in this article may be integrated as appropriate modules into a comprehensive model of oxygenic photosynthesis.


Biophysics | 2009

Computer simulation study of pH-dependent regulation of electron transport in chloroplasts

Ilya V. Kuvykin; A. V. Vershubskii; V. I. Priklonskii; Alexander N. Tikhonov

A mathematical model is presented that describes the key steps of photosynthetic electron transport and transmembrane proton transfer in chloroplasts. Numerical modeling has been performed with due regard for regulatory processes at the donor and acceptor parts of photosystem (PS) I. The influence of pH-dependent activation of the Calvin cycle enzymes and energy dissipation in PS II (nonphotochemical quenching of chlorophyll fluorescence) on the light-induced redox transients of P700, plastoquinone, and NADP as well as on the changes in intrathylakoid pH and ATP level is examined. It is demonstrated that pH-dependent regulatory processes alter the distribution of electron fluxes on the acceptor side of PS I and the total rate of electron flow between PS II and PS I. The light-induced activation of the Calvin cycle leads to significant enhancement of the electron flow from PS I to NADP+ and attenuation of the electron flow to molecular oxygen.


Biochemistry | 2004

Effects of diffusion and topological factors on the efficiency of energy coupling in chloroplasts with heterogeneous partitioning of protein complexes in thylakoids of grana and stroma. A mathematical model.

A. V. Vershubskii; V. I. Priklonskii; Alexander N. Tikhonov

In this work, we studied theoretically the effects of diffusion restrictions and topological factors that could influence the efficiency of energy coupling in the heterogeneous lamellar system of higher plant chloroplasts. Our computations are based on a mathematical model for electron and proton transport in chloroplasts coupled to ATP synthesis in chloroplasts that takes into account the nonuniform distribution of electron transport and ATP synthase complexes in the thylakoids of grana and stroma. Numerical experiments allowed the lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids to be simulated under different metabolic conditions (in the state of photosynthetic control and under conditions of photophosphorylation). This model also provided an opportunity to simulate the effects of steric constraints (the extent of appression of thylakoids in grana) on the rates of non-cyclic electron transport and ATP synthesis. This model demonstrated that there might be two mechanisms of regulation of electron and proton transport in chloroplasts: 1) slowing down of non-cyclic electron transport due to a decrease in the intra-thylakoid pH, and 2) retardation of plastoquinone reduction due to slow diffusion of protons inside the narrow gap between the thylakoids of grana. Numerical experiments for model systems that differ with respect to the arrangement of thylakoids in grana allowed the effects of osmolarity on the photophosphorylation rate in chloroplasts to be explained.


Biophysics | 2013

Electron transport and transmembrane proton transfer in photosynthetic systems of oxygenic type in Silico

A. V. Vershubskii; Alexander N. Tikhonov

Using a mathematical model of light-induced stages of photosynthesis, which takes into account the key stages of pH-dependent regulation on the acceptor and donor sides of PS I, we analyzed electron and proton transport in chloroplasts of higher plants and in cyanobacterial cells. A comparison of computer simulations with experimental data showed that our model adequately described the complex nonmonotonic kinetics of the light-induced redox transients of P700. Effects of atmospheric gases (CO2 and O2) on the kinetics of photooxidation of P700 and generation of the transmembrane pH difference were studied. We also analyzed how cyclic electron transport influenced the kinetics of electron transfer, intrathylakoid pH, and ATP production. Within the framework of our model, we described the time courses of electron flow through PS II and distribution of electron fluxes on the acceptor side of PS I in chloroplasts and in cyanobacteria. It was demonstrated that contributions of cyclic electron transport and electron flow to O2 (the Mehler reaction) were significant during the initial phase of the induction period, but diminished upon activation of the Calvin-Benson cycle.


Russian Journal of Physical Chemistry B | 2009

Alternative pathways of photoinduced electron transport in chloroplasts

Ilya V. Kuvykin; A. V. Vershubskii; Alexander N. Tikhonov

The influence of the alternative pathways of electron transport in photosynthetic systems of the oxygen type on the kinetics of the photoinduced redox transitions of P700, ferredoxin, NADP, pH of the intrathylakoid space or lumen, and relative concentration of ATP was studied. The oxygen effect on the kinetics of photooxidation of P700 was analyzed. The retardation of the photooxidation of P700 at low oxygen concentrations can be explained by the “over-reduction” of the acceptor side of PS1 as a result of a decrease in the electron outflow from PS1 to oxygen during hypoxia. The results of numerical experiments are in good agreement with known experimental data that the withdrawal of electrons from PS1 (on the ferredoxin-NADP segment of the chain) can be the limiting stage in the noncyclic electron transport chain. The functioning of the cyclic electron transport chain provides additional synthesis of ATP molecules and weakens the excess reduction of the acceptor segment of PS1. The alternative pathway of electron transport, namely, electron outflow from PS1 to oxygen also favors the optimum conditions for the functioning of the photosynthetic electron transport chain.


Journal of Photochemistry and Photobiology B-biology | 2015

Short-term regulation and alternative pathways of photosynthetic electron transport in Hibiscus rosa-sinensis leaves.

Boris V. Trubitsin; A. V. Vershubskii; V. I. Priklonskii; Alexander N. Tikhonov

In this work, using the EPR and PAM-fluorometry methods, we have studied induction events of photosynthetic electron transport in Hibiscus rosa-sinensis leaves. The methods used are complementary, providing efficient tools for in situ monitoring of P700 redox transients and photochemical activity of photosystem II (PSII). The induction of P700(+) in dark-adapted leaves is characterized by the multiphase kinetics with a lag-phase, which duration elongates with the dark-adaptation time. Analyzing effects of the uncoupler monensin and artificial electron carrier methylviologen (MV) on photooxidation of P700 and slow induction of chlorophyll a fluorescence (SIF), we could ascribe different phases of transient kinetics of electron transport processes in dark-adapted leaves to the following regulatory mechanisms: (i) acceleration of electron transfer on the acceptor side of PSI, (ii) pH-dependent modulation of the intersystem electron flow, and (iii) re-distribution of electron fluxes between alternative (linear, cyclic, and pseudocyclic) pathways. Monensin significantly decreases a level of P700(+) and inhibits SIF. MV, which mediates electron flow from PSI to O2 with consequent formation of H2O2, promotes a rapid photooxidation of P700 without any lag-phase peculiar to untreated leaves. MV-mediated water-water cycle (H2O→PSII→PSI→MV→O2→H2O2→H2O) is accompanied by generation of ascorbate free radicals. This suggests that the ascorbate peroxidase system of defense against reactive oxygen species is active in chloroplasts of H. rosa-sinensis leaves. In DCMU-treated chloroplasts with inhibited PSII, the contribution of cyclic electron flow is insignificant as compared to linear electron flow. For analysis of induction events, we have simulated electron transport processes within the framework of our generalized mathematical model of oxygenic photosynthesis, which takes into account pH-dependent mechanisms of electron transport control and re-distribution of electron fluxes between alternative pathways. The model adequately describes the main peculiarities of P700(+) induction and dynamics of the intersystem electron transport.


Photosynthesis Research | 2017

Erratum to: Connectivity between electron transport complexes and modulation of photosystem II activity in chloroplasts

Alexander N. Tikhonov; A. V. Vershubskii

In chloroplasts, photosynthetic electron transport complexes interact with each other via the mobile electron carriers (plastoquinone and plastocyanin) which are in surplus amounts with respect to photosystem I and photosystem II (PSI and PSII), and the cytochrome b 6 f complex. In this work, we analyze experimental data on the light-induced redox transients of photoreaction center P700 in chloroplasts within the framework of our mathematical model. This analysis suggests that during the action of a strong actinic light, even significant attenuation of PSII [for instance, in the result of inhibition of a part of PSII complexes by DCMU or due to non-photochemical quenching (NPQ)] will not cause drastic shortage of electron flow through PSI. This can be explained by “electronic” and/or “excitonic” connectivity between different PSII units. At strong AL, the overall flux of electrons between PSII and PSI will maintain at a high level even with the attenuation of PSII activity, provided the rate-limiting step of electron transfer is beyond the stage of PQH2 formation. Results of our study are briefly discussed in the context of NPQ-dependent mechanism of chloroplast protection against light stress.

Collaboration


Dive into the A. V. Vershubskii's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge