Vasily V. Ptushenko
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vasily V. Ptushenko.
Biochimica et Biophysica Acta | 2011
Ilya V. Kuvykin; Vasily V. Ptushenko; A. V. Vershubskii; Alexander N. Tikhonov
In this work, we have investigated the effects of atmospheric CO(2) and O(2) on induction events in Hibiscus rosa-sinensis leaves. These effects manifest themselves as multiphase kinetics of P(700) redox transitions and non-monotonous changes in chlorophyll fluorescence. Depletion of CO(2) and O(2) in air causes a decrease in linear electron flux (LEF) and dramatic lowering of P(700)(+) level. This is explained by the impediment to electron efflux from photosystem 1 (PS1) at low acceptor capacity. With the release of the acceptor deficit, the rate of LEF significantly increases. We have found that oxygen promotes the outflow of electrons from PS1, providing the rise of P(700)(+) level. The effect of oxygen as an alternative electron acceptor becomes apparent at low and ambient concentrations of atmospheric CO(2) < or = 0.06-0.07%). A decrease in LEF at low CO(2) is accompanied by a significant (about 3-fold) rise of non-photochemical quenching (NPQ) of chlorophyll fluorescence. Such an increase in NPQ can be explained by more significant acidification of the thylakoid lumen. This occurs due to lessening the proton flux through the ATP synthases caused by a decrease in the ATP consumption in the Bassham-Benson-Calvin (BBC) cycle. pH-dependent mechanisms of electron transport control have been described within the frames of our mathematical model. The model describes the reciprocal changes in LEF and NPQ and predicts the redistribution of electron fluxes on the acceptor side of PS1. In particular, the contribution of cyclic electron flow around PS1 (CEF1) and water-water cycle gradually decays during the induction phase. This result is consistent with experimental data indicating that under the steady-state conditions the contribution of CEF1 to photosynthetic electron transport in Hibiscus rosa-sinensis is insignificant (< or = 10%).
Biochemistry | 2008
Ilya V. Kuvykin; A. V. Vershubskii; Vasily V. Ptushenko; Alexander N. Tikhonov
This study deals with effects of oxygen on the kinetics of P700 photoinduced redox transitions and on induction transients of chlorophyll fluorescence in leaves of C3 plants Hibiscus rosa-sinensis and Vicia faba. It is shown that the removal of oxygen from the leaf environment has a conspicuous effect on photosynthetic electron transport. Under anaerobic conditions, the concentration of oxidized P700 centers in continuous white light was substantially lower than under aerobic conditions. The deficiency of oxygen released non-photochemical quenching of chlorophyll fluorescence, thus indicating a decrease in the trans-thylakoid pH gradient (ΔpH). Quantitative analysis of experimental data within the framework of an original mathematical model has shown that the steady-state electron flux toward oxygen in Chinese hibiscus leaves makes up to ∼40% of the total electron flow passing through photosystem 1 (PS1). The decrease in P700+ content under anaerobic conditions can be due to two causes: i) the retardation of electron outflow from PS1, and ii) the release of photosynthetic control (acceleration of electron flow from PS2 to P700+) owing to lower acidification of the intra-thylakoid space. At the same time, cyclic electron transport around PS1 was not stimulated in the oxygen-free medium, although such stimulation seemed likely in view of possible rearrangement of electron flows on the acceptor side of PS1. This conclusion stems from observations that the rates of P700+ reduction in DCMU-poisoned samples, both under aerobic and anaerobic conditions, were negligibly small compared to rates of electron flow from PS2 toward P700+ in untreated samples.
BioSystems | 2013
Vasily V. Ptushenko; Elena A. Ptushenko; Olga P. Samoilova; Alexander N. Tikhonov
Chlorophyll fluorescence analysis is one of the most convenient and widespread techniques used to monitor photosynthesis performance in plants. In this work, after a brief overview of the mechanisms of regulation of photosynthetic electron transport and protection of photosynthetic apparatus against photodamage, we describe results of our study of the effects of actinic light intensity on photosynthetic performance in Tradescantia species of different ecological groups. Using the chlorophyll fluorescence as a probe of photosynthetic activity, we have found that the shade-tolerant species Tradescantia fluminensis shows a higher sensitivity to short-term illumination (≤20min) with low and moderate light (≤200μEm(-2)s(-1)) as compared with the light-resistant species Tradescantia sillamontana. In T. fluminensis, non-photochemical quenching of chlorophyll fluorescence (NPQ) and photosystem II operational efficiency (parameter ΦPSII) saturate as soon as actinic light reaches ≈200μEm(-2)s(-1). Otherwise, T. sillamontana revealed a higher capacity for NPQ at strong light (≥800μEm(-2)s(-1)). The post-illumination adaptation of shade-tolerant plants occurs slower than in the light-resistant species. The data obtained are discussed in terms of reactivity of photosynthetic apparatus to short-term variations of the environment light.
Biochimica et Biophysica Acta | 2014
Georgy E. Milanovsky; Vasily V. Ptushenko; John H. Golbeck; Alexey Yu. Semenov; Dmitry A. Cherepanov
Molecular dynamics (MD) calculations, a semi-continuum (SC) approach, and quantum chemistry (QC) calculations were employed together to investigate the molecular mechanics of ultrafast charge separation reactions in Photosystem I (PS I) of Thermosynechococcus elongatus. A molecular model of PS I was developed with the aim to relate the atomic structure with electron transfer events in the two branches of cofactors. A structural flexibility map of PS I was constructed based on MD simulations, which demonstrated its rigid hydrophobic core and more flexible peripheral regions. The MD model permitted the study of atomic movements (dielectric polarization) in response to primary and secondary charge separations, while QC calculations were used to estimate the direct chemical effect of the A(0A)/A(0B) ligands (Met or Asn in the 688/668 position) on the redox potential of chlorophylls A(0A)/A(0B) and phylloquinones A(1A)/A(1B). A combination of MD and SC approaches was used to estimate reorganization energies λ of the primary (λ₁) and secondary (λ₂ ) charge separation reactions, which were found to be independent of the active branch of electron transfer; in PS I from the wild type, λ₁ was estimated to be 390 ± 20mV, while λ₂ was estimated to be higher at 445 ± 15mV. MD and QC approaches were used to describe the effect of substituting Met688(PsaA)/Met668(PsaB) by Asn688(PsaA)/Asn668(PsaB) on the energetics of electron transfer. Unlike Met, which has limited degrees of freedom in the site, Asn was found to switch between two relatively stable conformations depending on cofactor charge. The introduction of Asn and its conformation flexibility significantly affected the reorganization energy of charge separation and the redox potentials of chlorophylls A(0A)/A(0B) and phylloquinones A(1A)/A(1B), which may explain the experimentally observed slowdown of secondary electron transfer in the M688N(PsaA) variant. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Biochemistry | 2014
Georgy E. Milanovsky; Vasily V. Ptushenko; Dmitry A. Cherepanov; A. Yu. Semenov
The mechanisms of the ultrafast charge separation in reaction centers of photosystem I (PS I) complexes are discussed. A kinetic model of the primary reactions in PS I complexes is presented. The model takes into account previously calculated values of redox potentials of cofactors, reorganization energies of the primary P700+A0- and secondary P700+A1- ion-radical pairs formation, and the possibility of electron transfer via both symmetric branches A and B of redox-cofactors. The model assumes that the primary electron acceptor A0 in PS I is represented by a dimer of chlorophyll molecules Chl2A/Chl3A and Chl2B/Chl3B in branches A and B of the cofactors. The characteristic times of formation of P700+A0- and P700+A1- calculated on the basis of the model are close to the experimental values obtained by pump-probe femtosecond absorption spectroscopy. It is demonstrated that a small difference in the values of redox potentials between the primary electron acceptors A0A and A0B in branches A and B leads to asymmetry of the electron transfer in a ratio of 70: 30 in favor of branch A. The secondary charge separation is thermodynamically irreversible in the submicrosecond range and is accompanied by additional increase in asymmetry between the branches of cofactors of PS I.
Biochemistry | 2014
Vasily V. Ptushenko; O. S. Ptushenko; Alexander N. Tikhonov
Parameters of chlorophyll fluorescence induction (CFI) are widely used for assessment of the physiological state of higher plant leaves in biochemical, physiological, and ecological studies and in agricultural applications. In this work we have analyzed data on variability of some CFI parameters — ΦPSIImax = Fv/Fm (relative value of variable fluorescence), qNPQ (non-photochemical quenching coefficient), RFd (“vitality index”) — in autumnal leaves of ten arboreous plant species of the temperate climatic zone. The correlation between the chlorophyll content in the leaves and fluorescence parameters characterizing photosynthetic activity is shown for two representative species, the small-leaved linden Tilia cordata and the rowan tree Sorbus aucuparia. During the period of mass yellowing of the leaves, the ΦPSIImax value can be used as an adequate characteristic of their photochemical activity, while in summer the qNPQ or RFd values are more informative. We have established a correlation between the ΦPSIImax value, which characterizes the maximal photochemical activity of the photosystem II, and “chromaticity coordinates” of a leaf characterizing its color features. The chromaticity coordinates determined from the optical reflection spectra of the leaves serve as a quantitative measure of their hues, and this creates certain prerequisites for a visual expert assessment of the physiological state of the leaves.
Biologia Plantarum | 2016
Vasily V. Ptushenko; O. S. Ptushenko; Olga P. Samoilova; Alexei Solovchenko
Leaf anatomy and irradiance-dependent leaf transmittance changes serving as irradiance acclimation mechanisms in leaves were studied in two ecologically contrasting Tradescantia species, a shade plant T. fluminensis Vell. and a sun plant T. sillamontana Matuda, grown at different irradiances. A dramatic increase in leaf thickness (2 to 4-fold) under a high growth irradiance (800 μmol m−2 s−1) compared with a low growth irradiance (60 μmol m−2 s−1), achieved mainly by expansion of the epidermis, was recorded in both species. The effect took place on the background of modest changes in mesophyll thickness (1.8-fold in T. fluminensis and 1.15-fold in T. sillamontana) and chloroplast size (0.8-fold in T. fluminensis and an insignificant change in T. sillamontana). Mesophyll structure and growth irradiance response did not seem to facilitate significantly light-dependent chloroplast (avoidance) movement in these species. Nevertheless, an exceptionally large (2 to 4-fold) irradiance-induced increase in light transmittance attributable to chloroplast avoidance movement was revealed. This increase by far exceeded that in other higher plants according to available literature. The magnitude of the irradiance-dependent transmittance changes positively correlated both with the rate of photosystem II recovery and with the extent of xanthophyll deepoxidation in the leaves. This was opposite to a negative correlation observed between the same parameters in different plant species. We hypothesize that, at the evolutionary timescale, chloroplast avoidance movement might adjust independently from other photoprotective mechanisms, e.g., non-photochemical quenching, whereas, on the ontogenetic timescale, adjustment of these mechanisms inevitably follows the same trend.
Frontiers in Plant Science | 2016
Igor Fesenko; Anna Seredina; Georgij P. Arapidi; Vasily V. Ptushenko; Anatoly S. Urban; Ivan Butenko; Sergey I. Kovalchuk; Konstantin Babalyan; Andrey Knyazev; Regina Khazigaleeva; Elena Pushkova; Nikolai Anikanov; Vadim T. Ivanov; Vadim M. Govorun
Plant protoplasts are widely used for genetic manipulation and functional studies in transient expression systems. However, little is known about the molecular pathways involved in a cell response to the combined stress factors resulted from protoplast generation. Plants often face more than one type of stress at a time, and how plants respond to combined stress factors is therefore of great interest. Here, we used protoplasts of the moss Physcomitrella patens as a model to study the effects of short-term stress on the chloroplast proteome. Using label-free comparative quantitative proteomic analysis (SWATH-MS), we quantified 479 chloroplast proteins, 219 of which showed a more than 1.4-fold change in abundance in protoplasts. We additionally quantified 1451 chloroplast proteins using emPAI. We observed degradation of a significant portion of the chloroplast proteome following the first hour of stress imposed by the protoplast isolation process. Electron-transport chain (ETC) components underwent the heaviest degradation, resulting in the decline of photosynthetic activity. We also compared the proteome changes to those in the transcriptional level of nuclear-encoded chloroplast genes. Globally, the levels of the quantified proteins and their corresponding mRNAs showed limited correlation. Genes involved in the biosynthesis of chlorophyll and components of the outer chloroplast membrane showed decreases in both transcript and protein abundance. However, proteins like dehydroascorbate reductase 1 and 2-cys peroxiredoxin B responsible for ROS detoxification increased in abundance. Further, genes such as thylakoid ascorbate peroxidase were induced at the transcriptional level but down-regulated at the proteomic level. Together, our results demonstrate that the initial chloroplast reaction to stress is due changes at the proteomic level.
Photosynthesis Research | 2017
Vasily V. Ptushenko; Nataliya Evgenievna Zavoiskaya
In 1944, electron paramagnetic resonance (EPR) was discovered by Evgenii Konstantinovich Zavoisky in the USSR (Union of the Soviet Socialist Republics). Since then, magnetic resonance methods have contributed invaluably to our knowledge in many areas of Life Sciences and Chemistry, and particularly in the area of photosynthesis research. However, the road of the magnetic resonance methods, as well as its acceptance in Life Sciences and Chemistry, was not smooth and prompt in the (former) USSR. We discuss the role played by many including Jakov K. Syrkin, Nikolai N. Semenov, Vladislav V. Voevodsky, Lev A. Blumenfeld, Peter L. Kapitza, and Alexander I. Shalnikov during the early stages of biological and chemical EPR spectroscopy in the USSR.
Biochemistry | 2017
Vasily V. Ptushenko; O. S. Ptushenko; Olga P. Samoilova; Alexei Solovchenko
The kinetics of irradiation-induced changes in leaf optical transparence (ΔT) and non-photochemical quenching (NPQ) of chlorophyll fluorescence in Tradescantia fluminensis and T. sillamontana leaves adapted to different irradiance in nature was analyzed. Characteristic times of a photoinduced increase and a dark decline of ΔT in these species were 12 and 20 min, respectively. The ΔT was not confirmed to be the main contributor to the observed middle phase of NPQ relaxation kinetics (τ = 10-28 min). Comparison of rate of photoinduced increase in ΔT and photosystem II quantum yield recovery showed that the former did not affect the tolerance of the photosynthetic apparatus (PSA) to irradiances up to 150 μmol PAR·m–2·s–1. Irradiance tolerance correlated with the rate of “apparent NPQ” induction. Considering that the induction of apparent NPQ involves processes significantly faster than ΔT, we suggest that the photoprotective mechanism induction rate is crucial for tolerance of the PSA to moderate irradiance during the initial stage of light acclimation (first several minutes upon the onset of illumination).