A. V. Voronin
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. V. Voronin.
Nuclear Fusion | 2005
A. V. Voronin; V. K. Gusev; Yu. V. Petrov; N. V. Sakharov; K. B. Abramova; E.M. Sklyarova; S.Yu. Tolstyakov
Progress in the theoretical and experimental development of the plasma jet source and injection of hydrogen plasma and neutral gas jets into the Globus-M spherical tokamak is discussed. An experimental test bed is described for investigation of intense plasma jets that are generated by a double-stage plasma gun consisting of an intense source for neutral gas production and a conventional pulsed coaxial accelerator. A procedure for optimizing the accelerator parameters so as to achieve the maximum possible flow velocity with a limited discharge current and a reasonable length of the coaxial electrodes is presented. The calculations are compared with experiment. Plasma jet parameters, among them pressure distribution across the jet, flow velocity, plasma density, etc, were measured. Plasma jets with densities of up to 1022 m−3, total numbers of accelerated particles (1–5) × 1019, and flow velocities of 50–100 km s−1 were successfully injected into the plasma column of the Globus-M tokamak. Interferometric and Thomson scattering measurements confirmed deep jet penetration and a fast density rise (<0.5 ms) at all spatial points up to a radius r≈ 0.3a. The plasma particle inventory increase by ~50% (from 0.65 × 1019 to 1 × 1019) did not result in plasma degradation.
Nuclear Fusion | 2006
V. K. Gusev; F. V. Chernyshev; V.E. Golant; V.M. Leonov; R.G. Levin; V. B. Minaev; A.B. Mineev; M. I. Patrov; Yu. V. Petrov; N. V. Sakharov; S.Yu. Tolstyakov; V. I. Varfolomeev; A. V. Voronin; E.G. Zhilin
The results of the experimental campaign on Globus-M (R = 0.36 m, a = 24 m) devoted to investigating density limits and density control are reported. The experiments were performed at Btor = 0.4 T, Ip = 0.18–0.25 MA, q95 = 3.5–5 and plasma vertical elongation, κ ~ 1.5–1.7. The density limits achieved with the gas puffing method of density control in the previous periods in ohmic heating (OH) regime are discussed. The progress made in OH scenario optimization helped the density to approach the Greenwald limit. Co-current neutral beam of deuterium with the power in the range of 0.45–0.6 MW at the beam energy of 28–29 keV was injected into deuterium target plasma at the early stage of the discharge, which allowed the density to overcome the Greenwald limit. Line averaged densities in excess of 1.5 × 1020 m−3 were achieved, during the external gas puff. An ion temperature increase, measured by NPA was accompanied by a definite increase in the electron energy content, registered by Thomson scattering. Injection of a pure, highly ionized hydrogen plasma jet with a density up to 1022 m−3, total number of accelerated particles (1–5) × 1019 and a flow velocity of ~110 km s−1 was used as another instrument for density control. It increased plasma particle inventory in the Globus-M by ~50% (from 0.65 × 1019 to 1 × 1019) in a single shot without target OH plasma parameter degradation. The injection resulted in a fast density increase with the time much shorter than with gas puff fuelling, which was confirmed by Thomson scattering measurements.
Nuclear Fusion | 2011
V. K. Gusev; R.M. Aminov; A.A. Berezutskiy; V V Bulanin; F. V. Chernyshev; I. N. Chugunov; A.V. Dech; V. V. Dyachenko; A. E. Ivanov; S. A. Khitrov; N.A. Khromov; G. S. Kurskiev; M. M. Larionov; A.D. Melnik; V. B. Minaev; A.B. Mineev; M. I. Mironov; I.V. Miroshnikov; E. E. Mukhin; A.N. Novokhatsky; A. Panasenkov; M. I. Patrov; A V Petrov; Yu. V. Petrov; K.A. Podushnikova; V. Rozhansky; V.V. Rozhdestvensky; N. V. Sakharov; A.E. Shevelev; I. Yu. Senichenkov
The experimental and theoretical results obtained in the last two years on the interaction of neutral particle beams and high-frequency waves with a plasma using the spherical tokamak Globus-M are discussed. The experiments on the injection of low-energy proton beam of ~300 eV directed particle energy are performed with a plasma gun that produces a hydrogen plasma jet of density up to 3 × 1022 m−3 and a high velocity up to 250 km s−1. A moderate density rise (up to 30%) is achieved in the central plasma region without plasma disruption. Experiments on high-energy (up to 30 keV) neutral beam injection into the D-plasma are analysed. Modelling results on confinement of fast particles inside the plasma column that follows the neutral beam injection are discussed. The influence of the magnetic field on the fast particle losses is argued. A neutral beam injection regime with primary ion heating is obtained and discussed. The new regime with fast current ramp-up and early neutral beam injection shows electron temperature rise and formation of broad Te profiles until the q = 1 flux surface enters the plasma column. An energetic particle mode in the range of frequencies 5–30 kHz and toroidal Alfven eigenmodes in the range 50–300 kHz are recorded in that regime simultaneously with the Te rise. The energetic particle mode and toroidal Alfven eigenmodes behaviour are discussed. The toroidal Alfven eigenmode spectrum appears in Globus-M as a narrow band corresponding to n = 1. The first experimental results on plasma start-up and noninductive current drive generation are presented. The experiments are carried out with antennae providing mostly poloidal slowing down of waves with a frequency of 920 MHz, which is higher than a lower hybrid one existing under the experimental conditions. The high current drive efficiency is shown to be high (of about 0.25 A W−1), and its mechanism is proposed. Some near future plans of the experiments are also discussed.
Plasma Physics Reports | 2005
K. B. Abramova; A. V. Voronin; V. K. Gusev; E.E. Mukhin; Yu. V. Petrov; N. V. Sakharov; F. V. Chernyshev
A new type of plasma source with titanium hydride granules used as a hydrogen accumulator was employed to inject a dense, highly ionized plasma jet into the Globus-M spherical tokamak. The experiments have shown that the jet penetrates through the tokamak magnetic field and increases the plasma density, without disturbing the stability of the plasma column. It is found that, when the plasma jet is injected before a discharge, more favorable conditions (as compared to those during gas puffing) are created for the current ramp-up at a lower MHD activity in the plasma column. Plasma injection at the instant of maximum current results in a more rapid growth in the plasma density in comparison to gas puffing.
Plasma Physics Reports | 2015
N. V. Sakharov; A. V. Voronin; V. K. Gusev; A. A. Kavin; S. N. Kamenshchikov; K. M. Lobanov; V. B. Minaev; A.N. Novokhatsky; M. I. Patrov; Yu. V. Petrov; P. B. Shchegolev
The results of reconstruction of equilibrium magnetic configurations in the Globus-M spherical tokamak by means of the EFIT code and by the method of movable filaments with the use of the data from magnetic measurements are compared. The EFIT code allows one to completely reconstruct the magnetic configuration by solving the Grad−Shafranov equation. In the method of movable filaments, the distribution of the toroidal current flowing through the plasma is described by a set of infinitely thin current-carrying rings. In this method, the last closed magnetic surface (LCMS) and the open surfaces lying beyond the LCMS are calculated. Using both methods, the coordinates of the regions where the separatrix strikes the divertor plates were determined. The results obtained agree well with the distributions of the temperature over the tungsten divertor tiles measured using an IR camera.
Nuclear Fusion | 2015
V. V. Dyachenko; O. N. Shcherbinin; E. Z. Gusakov; V. K. Gusev; M A Irzak; G.S. Kurskiev; Yu. V. Petrov; A. N. Saveliev; N. V. Sakharov; S. A. Khitrov; N. A. Khromov; V. I. Varfolomeev; A. V. Voronin
First experiments on non-inductive current drive (CD) in the spherical tokamak using lower hybrid (LH) waves at 2.45 GHz are described. The basic characteristics of the new experimental approach utilizing poloidal LH wave slowing-down scheme obtained by modeling are presented at the beginning of the paper. The experimental results for a poloidal slowing-down scheme are described. The CD efficiency comparable or even higher than theoretically predicted is demonstrated in the experiment using a 10 waveguide grill with 120° phase shift between neighboring waveguides.
Technical Physics Letters | 2017
M. V. Gorokhov; V. M. Kozhevin; D. A. Yavsin; A. V. Voronin; S. A. Gurevich
We have experimentally studied the action of high-power plasma flows on pure tungsten plates covered with multilayer films of tungsten nanoparticles formed by the method of laser electrodeposition. The samples were irradiated using a plasma gun producing hydrogen (helium) plasma flows with power density up to 35 GW/cm2. The resulting surface morphology was studied by scanning electron microscopy (SEM). SEM data showed that tungsten plates coated by nanoparticles are more resistant to the formation of microcracks than are pure tungsten plates.
Technical Physics Letters | 2016
V. M. Timokhin; A. I. Rykachevskii; I.V. Miroshnikov; V. Yu. Sergeev; M. M. Kochergin; A. N. Koval; E. E. Mukhin; S. Yu. Tolstyakov; A. V. Voronin
A diagnostic technique that is based on measuring the ratios of neutral-helium line strengths has been developed for peripheral distributions of electron temperature and density of tokamak plasma. The main components of the technique are a four-channel filter-lens imaging polychromator (FLIP-4) and a Phantom Miro M110 high-speed camera for recording the images. The polychromator has been assembled, adjusted, and tested on an optical test bench. The optical system was installed on the spherical Globus-M tokamak. Some preliminary experiments were carried out. Images of the plasma-gun jet were obtained at neutralhelium lines.
Plasma Physics Reports | 2004
E. A. Azizov; A. V. Babarykin; A. V. Voronin; V. K. Gusev; A. Yu. Malyshev; V. K. Markov; A. A. Petrov; V. G. Petrov; Yu. V. Petrov; V. V. Rozhdestvenskii; N. V. Sakharov
A weeping pulsed radar reflectometer designed for measuring the spatial electron density distribution in the Globus-M spherical tokamak with a minor plasma radius of a=24 cm, a major radius of R=36 cm, a toroidal field of BT=0.5 T, a plasma current of Ip=200 kA, and an average density of n=(3–10)×1013 cm−3 is described. The reflectometer operation is based on the reflection of microwaves with a carrier frequency f from a plasma layer with the critical density n=(0.0111f)2, where n is the electron density in units of 1014 cm−3 and f is the microwave frequency in GHz. By simultaneously probing the plasma at different frequencies, it is possible to recover the electron density profile. Microwave pulses with different frequencies are obtained by frequency sweeping. To increase the range of measured densities, channels with fixed frequencies are also used; as a result, the instrument has eleven frequency channels: a 19.5-GHz channel, eight channels in the 26-to 40-GHz frequency range, a 51.5-GHz channel, and a 60-GHz channel, which corresponds to eleven points in the density profile: 0.47×1013 cm−3, eight points in the (0.8–1.95)×1013-cm−3 range, 3.27×1013 cm−3, and 4.5×1013 cm−3. The reflectometer allows detailed measurements of the density profile with a time resolution of several tens of microseconds, which can be useful, in particular, in studying the processes related to the formation of an internal transport barrier in plasma. The first results obtained using this reflectometer in the Globus-M tokamak under various operating conditions are discussed.
Archive | 2007
A. V. Voronin; K. B. Abramova; V. K. Gusev; G.S. Kurskiev; B. B. Ayushin; R.G. Levin; M.M. Kochergin; E. E. Mukhin; V. B. Minaev; M. I. Patrov; Yu V Petrov; N. V. Sakharov; I. P. Scherbakov; S.Yu. Tolstyakov; E. E. Zhilin; A. F. Ioffe