Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Vostner is active.

Publication


Featured researches published by A. Vostner.


IEEE Transactions on Applied Superconductivity | 2008

Results of a New Generation of ITER TF Conductor Samples in SULTAN

Pierluigi Bruzzone; Boris Stepanov; Rainer Wesche; E. Salpietro; A. Vostner; K. Okuno; Takaaki Isono; Y. Takahashi; Hyoung Chan Kim; Keeman Kim; A. Shikov; V. Sytnikov

A new generation of ITER TF conductor samples has been assembled and tested in SULTAN in 2007 following a common procedure agreed among the ITER parties. The test results of six SULTAN samples, made of twelve conductor sections manufactured in Europe, Japan, Korea and Russia, are reported here. The conductor layout reflects the ITER TF conductor design, with minor differences for the Nb3Sn strand characteristics, void fraction and twist pitch. The object of the test is a straight comparison with the ITER requirement of 5.7 K current sharing temperature at 68 kA current and 11.3 T field. A broad range of behavior is observed.


IEEE Transactions on Applied Superconductivity | 2008

Test Results of Two European ITER TF Conductor Samples in SULTAN

Pierluigi Bruzzone; M. Bagnasco; Marco Calvi; Francesca Cau; D. Ciazynski; A. della Corte; A. Di Zenobio; L. Muzzi; Arend Nijhuis; E. Salpietro; L. Savoldi Richard; S. Turtu; A. Vostner; Rainer Wesche; Roberto Zanino

Four conductor lengths were prepared according to the ITER TF conductor design and assembled into two SULTAN samples. The four lengths are not fully identical, with variations of the strand supplier, void fraction and twist pitch. Lower void fractions improve the strand support and increased twist pitches also lower the strand contact pressure but both tend to increase the AC loss and the lower void fraction also increases the pressure drop so that the mass flow rate in the strand bundle area of the cable is reduced. The assembly procedure of the two samples is described including the destructive investigation on a short conductor section to assess a possible perturbation of the cable-to-jacket slippage during the termination preparation. Based on the DC performance and AC loss results from the test in SULTAN, the impact of the void fraction and twist pitch variations is discussed in view of freezing the ITER conductor design and large series manufacture. A comparison with the former generation of conductors, using similar strands but based on the ITER Model Coil layout, is also carried out. The ITER specifications, in terms of current sharing temperature, are fulfilled by both samples, with outstanding results for the conductor with longer twist pitches.


Superconductor Science and Technology | 2013

2013 The effect of axial and transverse loading on the transport properties of ITER Nb3Sn strands

Arend Nijhuis; R.P. Pompe van Meerdervoort; Hendrikus J.G. Krooshoop; Wilhelm A.J. Wessel; Chao Zhou; G. Rolando; Charlie Sanabria; P. J. Lee; D. C. Larbalestier; Arnaud Devred; A. Vostner; N. Mitchell; Y. Takahashi; Y. Nabara; T. Boutboul; V. Tronza; S-H Park; Wu Yu

The differences in thermal contraction of the composite materials in a cable in conduit conductor (CICC) for the International Thermonuclear Experimental Reactor (ITER), in combination with electromagnetic charging, cause axial, transverse contact and bending strains in the Nb3Sn filaments. These local loads cause distributed strain alterations, reducing the superconducting transport properties. The sensitivity of ITER strands to different strain loads is experimentally explored with dedicated probes. The starting point of the characterization is measurement of the critical current under axial compressive and tensile strain, determining the strain sensitivity and the irreversibility limit corresponding to the initiation of cracks in the Nb3Sn filaments for axial strain. The influence of spatial periodic bending and contact load is evaluated by using a wavelength of 5?mm. The strand axial tensile stress?strain characteristic is measured for comparison of the axial stiffness of the strands. Cyclic loading is applied for transverse loads following the evolution of the critical current, n-value and deformation. This involves a component representing a permanent (plastic) change and as well as a factor revealing reversible (elastic) behavior as a function of the applied load.The experimental results enable discrimination in performance reduction per specific load type and per strand type, which is in general different for each manufacturer involved. Metallographic filament fracture studies are compared to electromagnetic and mechanical load test results. A detailed multifilament strand model is applied to analyze the quantitative impact of strain sensitivity, intrastrand resistances and filament crack density on the performance reduction of strands and full-size ITER CICCs. Although a full-size conductor test is used for qualification of a strand manufacturer, the results presented here are part of the ITER strand verification program. In this paper, we present an overview of the results and comparisons.


Superconductor Science and Technology | 2012

Results of the TF conductor performance qualification samples for the ITER project

Marco Breschi; Arnaud Devred; Marco Casali; D. Bessette; M. C. Jewell; N. Mitchell; I. Pong; A. Vostner; Pierluigi Bruzzone; Boris Stepanov; Thierry Boutboul; N. Martovetsky; Keeman Kim; Y. Takahashi; V Tronza; Wu Yu

The performance of the toroidal field (TF) magnet conductors for the ITER machine are qualified by a short full-size sample (4 m) current sharing temperature (T-cs) test in the SULTAN facility at CRPP in Villigen, Switzerland, using the operating current of 68 kA and the design peak field of 11.8 T. Several samples, including at least one from each of the six ITER Domestic Agencies participating in TF conductor fabrication (China, European Union, Japan, Russia, South Korea and the United States), have been qualified by the ITER Organization after achieving T-cs values of 6.0-6.9 K, after 700-1000 electromagnetic cycles. These T-cs values exceed the ITER specification and enabled the industrial production of these long-lead items for the ITER tokamak to begin in each Domestic Agency. Some of these samples did not pass the qualification test. In this paper, we summarize the performance of the qualified samples, analyze the effect of strand performance on conductor performance, and discuss the details of the test results.


IEEE Transactions on Applied Superconductivity | 2009

Test Results of a

Pierluigi Bruzzone; Boris Stepanov; Rainer Wesche; A. della Corte; L. Affinito; M. Napolitano; A. Vostner

The performance degradation under electro-magnetic, transverse load has grown to a key issue for the design of Nb3Sn cable-in-conduit conductors (CICC). Beside the tolerance to bending strain of the basic Nb3Sn strand and the void fraction of the CICC, a relevant parameter is thought to be the cable pattern. A sequence of ldquolongrdquo twist pitches in the early stages of a multi-stage cable is credited to mitigate the performance degradation compared to ldquoshortrdquo pitches. To assess quantitatively the effect of long/short pitches maintaining constant all other conductor parameters, a short length of four stages CICC is prepared, where the first half length has long pitches (83/140/192 mm) in the first three cable stages and the second half length has short pitches (34/95/139 mm). The last stage pitch is 213 mm for both lengths. The cable is made of Cr plated copper and Nb3Sn strands with a diameter of 0.81 mm. The conductor is assembled into a SULTAN hairpin sample where the two branches have respectively long and short pitches. The DC performance, AC loss and pressure drop are measured in both conductor sections and compared to former conductors with the same design. The results are reported and the balance of advantages and drawbacks of long vs. short pitches is discussed.


IEEE Transactions on Applied Superconductivity | 2007

{\rm Nb}_{3}{\rm Sn}

Pierluigi Bruzzone; M. Bagnasco; D. Ciazynski; A. della Corte; A. Di Zenobio; R. Herzog; Y. Ilyin; B. Lacroix; L. Muzzi; Arend Nijhuis; B. Renard; E. Salpietro; Laura Savoldi Richard; Boris Stepanov; S. Turtu; A. Vostner; Rainer Wesche; L. Zani; Roberto Zanino

Two short length samples have been prepared and tested in SULTAN to benchmark the performance of high current density, advanced Nb3Sn strands in the large cable-in-conduit conductors (CICC) for ITER. The cable pattern and jacket layout were identical to the toroidal field model coil conductor (TFMC), tested in 1999. The four conductor sections used strands from OST, EAS, OKSC and OCSI respectively. The Cu:non-Cu ratio was 1 for three of the new strands, compared to 1.5 in the TFMC strand. The conductors with OST and OKSC strands had one Cu wire for two Nb3Sn strands, as in TFMC. In the EAS and OCSI conductors, all the 1080 strands in the cable were Nb3Sn. A dc test under relevant load conditions and a thermal-hydraulic campaign was carried out in SULTAN. The CICC performance was strongly degraded compared to the strand for all the four conductors. The current sharing temperature at the ITER TF operating conditions (jop = 286 A/mm2, B = 11.15 T) was lower than requested by ITER.


IEEE Transactions on Applied Superconductivity | 2013

Cable-in-Conduit Conductor With Variable Pitch Sequence

Arnaud Devred; D. Bessette; Pierluigi Bruzzone; K. Hamada; Takaaki Isono; N. Martovetsky; N. Mitchell; Y. Nunoya; K. Okuno; I. Pong; W. Reiersen; C. M. Rey; Boris Stepanov; Y. Takahashi; A. Vostner

The ITER central solenoid (CS) must be capable of driving inductively 30 000 15 MA plasma pulses with a burn duration of 400 s. This implies that during the lifetime of the machine, the CS, comprised of six independently powered coil modules, will have to sustain severe and repeated electromagnetic cycles to high current and field conditions. The design of the CS calls for the use of cable-in-conduit conductors made up of and pure copper strands, assembled in a five-stage, rope-type cable around a central cooling spiral that is inserted into a circle-in-square jacket made up of a special grade of high manganese stainless steel. Since cable-in-conduit conductors are known to exhibit electromagnetic cycling degradation, prior to the launch of production, the conductor design and potential suppliers must be qualified through the successful testing of full-size conductor samples. These tests are carried out at the SULTAN test facility. In this paper, we report the results of the on-going CS conductor performance qualification and we present the options under consideration for the different modules constituting the CS coil.


IEEE Transactions on Applied Superconductivity | 2009

Test Results of Two ITER TF Conductor Short Samples Using High Current Density Nb

D. Bessette; L. Bottura; Arnaud Devred; N. Mitchell; K. Okuno; Y. Nunoya; C. Sborchia; Y. Takahashi; Arjan Verweij; A. Vostner; Roberto Zanino; E. Zapretilina

In this paper we report the main test results obtained on the Poloidal Field Conductor Insert coil (PFI) for the International Thermonuclear Experimental Reactor (ITER), built jointly by the EU and RF ITER parties, recently installed and tested in the CS Model Coil facility, at JAEA-Naka. During the test we (a) verified the DC and AC operating margin of the NbTi Cable-in-Conduit Conductor in conditions representative of the operation of the ITER PF coils, (b) measured the intermediate conductor joint resistance, margin and loss, and (c) measured the AC loss of the conductor and its changes once subjected to a significant number of Lorentz force cycles. We compare the results obtained to expectations from strand and cable characterization, which were studied extensively earlier. We finally discuss the implications for the ITER PF system.


IEEE Transactions on Applied Superconductivity | 2008

_{3}

A. Vostner; P. Bauer; Rainer Wesche; U. Besi Vetrella; Boris Stepanov; A. della Corte; A. Portone; E. Salpietro; Pierluigi Bruzzone

Following the outcome of the conceptual design phase the EFDA dipole magnet will be made of rectangular cable-in-conduit conductors (CICC) jacketed in 316LN. In order to optimize the required amount of superconductor two different conductor types are used: a high-field (HF) conductor consisting of 144 strands and a low-field (LF) conductor with 108 strands. A high strand with a critical current density (at 4.2 K and 12 T) and an effective filament diameter of was selected. The first series of conductor prototype specimens was tested in summer 2006 but the conductor performances were lower than expected from the pre-prototype tests of 2005 and not fulfilling the design criteria. The conductor layouts were modified to increase the strand support inside the cable and the revised HF conductor design was qualified successfully end of 2006. A current sharing temperature 6 K was found at the dipole operating conditions (12.8 T, 17 kA) confirming the required temperature margin of more than 1 K. The HF conductor qualification process including the design modifications, analysis of the test results and comparison to the expectations are discussed.


IEEE Transactions on Applied Superconductivity | 2008

Sn Strands

A. Portone; W. Baker; E. Salpietro; A. Vostner; Pierluigi Bruzzone; Francesca Cau; A. della Corte; A. Di Zenobio; Eckhard Theisen; A. Baldini; Pietro Testoni; J. Lucas; M. Pinilla; G. Samuelli

A 12.5 T superconducting dipole magnet (European DIPOle, EDIPO) has been designed by EFDA and it is now being procured within the framework of the European Fusion Programme in order to be installed in CRPP-PSI. This saddle-shaped magnet is designed to reach 12.5 T in a 100 times 150 mm rectangular bore over a length of about 1.5 m in order to test full size conductor samples that shall be produced during the ITER magnets procurement. The magnet uses Cable In Conduit Conductor (CICC) technology and the cables are made of high Jc (about 2300 A/mm2 at 4.2 K, 12 T) superconducting strands. In this paper the main magnet parameters are given together with the key supporting electromagnetic, mechanical and thermal analyses. An update on the general status of the procurement of the strand, conductors, dipole magnet and facility is also given together with the key results of the on-going supporting R&D.

Collaboration


Dive into the A. Vostner's collaboration.

Top Co-Authors

Avatar

Pierluigi Bruzzone

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris Stepanov

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Rainer Wesche

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge