Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A Wroe is active.

Publication


Featured researches published by A Wroe.


Medical Physics | 2007

Out-of-field dose equivalents delivered by proton therapy of prostate cancer

A Wroe; Anatoly B. Rosenfeld; Reinhard W. Schulte

Measurements were performed to assess the dose equivalent outside a primary proton treatment field, using a silicon-on-insulator (SOI) microdosimeter. The SOI microdosimeter was placed on the surface of an anthropomorphic phantom and dose equivalents were determined as a function of lateral distance from a typical passively scattered and modulated prostate treatment field. Measurements were also completed within a polystyrene plate phantom as a function of depth for a distance of 5 cm from the field edge, as function of lateral distance from field edge at two different depths, and as a function of distance from the distal edge on the central beam axis. The dose equivalent at the surface of the anthropomorphic phantom decreases from 3.9 to 0.18 mSv/Gy when the lateral distance from the proton field edge increases from 2.5 to 60 cm. Measurements along the proton depth dose distribution at a constant distance of 5 cm from the primary field edge indicate a decrease in dose equivalent as a function of depth, with a 38% decrease relative to the surface dose at a depth of 5 cm in polystyrene. Measurements completed as a function of lateral distance from the primary field at two separate depths within polystyrene illustrate a convergence of the dose equivalent at approximately 20 cm from the primary field edge. Past the distal edge of the spread-out Bragg peak dose equivalents decrease exponentially for increasing distance, with an initial value of 1.6 mSv/Gy at 0.6 cm from the distal edge. Silicon microdosimetry measurements were also compared with published results obtained utilizing different measurement techniques. This study demonstrates the applicability of SOI microdosimetry in determining the dose equivalent outside proton treatment fields, and provides valuable information on the dose equivalent both at the surface and at depth experienced by prostate cancer patients treated with protons.


Medical Physics | 2005

Density resolution of proton computed tomography

Reinhard W. Schulte; V. Bashkirov; Margio Cezar Loss Klock; Tianfang Li; A Wroe; Ivan Evseev; D. C. Williams; T. Satogata

Conformal proton radiation therapy requires accurate prediction of the Bragg peak position. Protons may be more suitable than conventional x-rays for this task since the relative electron density distribution can be measured directly with proton computed tomography (CT). However, proton CT has its own limitations, which need to be carefully studied before this technique can be introduced into routine clinical practice. In this work, we have used analytical relationships as well as the Monte Carlo simulation tool GEANT4 to study the principal resolution limits of proton CT. The noise level observed in proton CT images of a cylindrical water phantom with embedded tissue-equivalent density inhomogeneities, which were generated based on GEANT4 simulations, compared well with predictions based on Tschalars theory of energy loss straggling. The relationship between phantom thickness, initial energy, and the relative electron density resolution was systematically investigated to estimate the proton dose needed to obtain a given density resolution. We show that a reasonable density resolution can be achieved with a relatively small dose, which is comparable to or even lower than that of x-ray CT.


Medical Physics | 2012

Water-equivalent path length calibration of a prototype proton CT scanner

R. F. Hurley; Reinhard W. Schulte; V. Bashkirov; A Wroe; A Ghebremedhin; H. Sadrozinski; V. Rykalin; G. Coutrakon; P. Koss; B Patyal

PURPOSE The authors present a calibration method for a prototype proton computed tomography (pCT) scanner. The accuracy of these measurements depends upon careful calibration of the energy detector used to measure the residual energy of the protons that passed through the object. METHODS A prototype pCT scanner with a cesium iodide (CsI(Tl)) crystal calorimeter was calibrated by measuring the calorimeter response for protons of 200 and 100 MeV initial energies undergoing degradation in polystyrene plates of known thickness and relative stopping power (RSP) with respect to water. Calibration curves for the two proton energies were obtained by fitting a second-degree polynomial to the water-equivalent path length versus calorimeter response data. Using the 100 MeV calibration curve, the RSP values for a variety of tissue-equivalent materials were measured and compared to values obtained from a standard depth-dose range shift measurement using a water-tank. A cylindrical water phantom was scanned with 200 MeV protons and its RSP distribution was reconstructed using the 200 MeV calibration. RESULTS It is shown that this calibration method produces measured RSP values of various tissue-equivalent materials that agree to within 0.5% of values obtained using an established water-tank method. The mean RSP value of the water phantom reconstruction was found to be 0.995 ± 0.006. CONCLUSIONS The method presented provides a simple and reliable procedure for calibration of a pCT scanner.


Medical Physics | 2009

Assessment of out-of-field absorbed dose and equivalent dose in proton fields

B Clasie; A Wroe; Hanne M. Kooy; Nicolas Depauw; J Flanz; Harald Paganetti; Anatoly B. Rosenfeld

PURPOSE In proton therapy, as in other forms of radiation therapy, scattered and secondary particles produce undesired dose outside the target volume that may increase the risk of radiation-induced secondary cancer and interact with electronic devices in the treatment room. The authors implement a Monte Carlo model of this dose deposited outside passively scattered fields and compare it to measurements, determine the out-of-field equivalent dose, and estimate the change in the dose if the same target volumes were treated with an active beam scanning technique. METHODS Measurements are done with a thimble ionization chamber and the Wellhofer MatriXX detector inside a Lucite phantom with field configurations based on the treatment of prostate cancer and medulloblastoma. The authors use a GEANT4 Monte Carlo simulation, demonstrated to agree well with measurements inside the primary field, to simulate fields delivered in the measurements. The partial contributions to the dose are separated in the simulation by particle type and origin. RESULTS The agreement between experiment and simulation in the out-of-field absorbed dose is within 30% at 10-20 cm from the field edge and 90% of the data agrees within 2 standard deviations. In passive scattering, the neutron contribution to the total dose dominates in the region downstream of the Bragg peak (65%-80% due to internally produced neutrons) and inside the phantom at distances more than 10-15 cm from the field edge. The equivalent doses using 10 for the neutron weighting factor at the entrance to the phantom and at 20 cm from the field edge are 2.2 and 2.6 mSv/Gy for the prostate cancer and cranial medulloblastoma fields, respectively. The equivalent dose at 15-20 cm from the field edge decreases with depth in passive scattering and increases with depth in active scanning. Therefore, active scanning has smaller out-of-field equivalent dose by factors of 30-45 in the entrance region and this factor decreases with depth. CONCLUSIONS The dose deposited immediately downstream of the primary field, in these cases, is dominated by internally produced neutrons; therefore, scattered and scanned fields may have similar risk of second cancer in this region. The authors confirm that there is a reduction in the out-of-field dose in active scanning but the effect decreases with depth. GEANT4 is suitable for simulating the dose deposited outside the primary field. The agreement with measurements is comparable to or better than the agreement reported for other implementations of Monte Carlo models. Depending on the position, the absorbed dose outside the primary field is dominated by contributions from primary protons that may or may not have scattered in the brass collimating devices. This is noteworthy as the quality factor of the low LET protons is well known and the relative dose risk in this region can thus be assessed accurately.


International Journal of Radiation Oncology Biology Physics | 2008

Out-of-Field Dose Equivalents Delivered by Passively Scattered Therapeutic Proton Beams for Clinically Relevant Field Configurations

A Wroe; B. Clasie; Hanne M. Kooy; J Flanz; Reinhard W. Schulte; Anatoly B. Rosenfeld

PURPOSE Microdosimetric measurements were performed at Massachusetts General Hospital, Boston, MA, to assess the dose equivalent external to passively delivered proton fields for various clinical treatment scenarios. METHODS AND MATERIALS Treatment fields evaluated included a prostate cancer field, cranial and spinal medulloblastoma fields, ocular melanoma field, and a field for an intracranial stereotactic treatment. Measurements were completed with patient-specific configurations of clinically relevant treatment settings using a silicon-on-insulator microdosimeter placed on the surface of and at various depths within a homogeneous Lucite phantom. The dose equivalent and average quality factor were assessed as a function of both lateral displacement from the treatment field edge and distance downstream of the beams distal edge. RESULTS Dose-equivalent value range was 8.3-0.3 mSv/Gy (2.5-60-cm lateral displacement) for a typical prostate cancer field, 10.8-0.58 mSv/Gy (2.5-40-cm lateral displacement) for the cranial medulloblastoma field, 2.5-0.58 mSv/Gy (5-20-cm lateral displacement) for the spinal medulloblastoma field, and 0.5-0.08 mSv/Gy (2.5-10-cm lateral displacement) for the ocular melanoma field. Measurements of external field dose equivalent for the stereotactic field case showed differences as high as 50% depending on the modality of beam collimation. Average quality factors derived from this work ranged from 2-7, with the value dependent on the position within the phantom in relation to the primary beam. CONCLUSIONS This work provides a valuable and clinically relevant comparison of the external field dose equivalents for various passively scattered proton treatment fields.


Radiation Research | 2011

Analysis of White Blood Cell Counts in Mice after Gamma- or Proton-Radiation Exposure

Casey Maks; X. Steven Wan; Jeffrey H. Ware; Ana L. Romero-Weaver; Jenine K. Sanzari; Jolaine M. Wilson; Steve Rightnar; A Wroe; Peter Koss; Daila S. Gridley; James M. Slater; Ann R. Kennedy

In the coming decades human space exploration is expected to move beyond low-Earth orbit. This transition involves increasing mission time and therefore an increased risk of radiation exposure from solar particle event (SPE) radiation. Acute radiation effects after exposure to SPE radiation are of prime importance due to potential mission-threatening consequences. The major objective of this study was to characterize the dose–response relationship for proton and &ggr; radiation delivered at doses up to 2 Gy at high (0.5 Gy/min) and low (0.5 Gy/h) dose rates using white blood cell (WBC) counts as a biological end point. The results demonstrate a dose-dependent decrease in WBC counts in mice exposed to high- and low-dose-rate proton and &ggr; radiation, suggesting that astronauts exposed to SPE-like radiation may experience a significant decrease in circulating leukocytes.


IEEE Transactions on Nuclear Science | 2007

Solid State Microdosimetry With Heavy Ions for Space Applications

A Wroe; Anatoly B. Rosenfeld; Mark I. Reinhard; Vincent L. Pisacane; James F. Ziegler; Martin E. Nelson; F. Cucinotta; Marco Zaider; J. F. Dicello

This work provides information pertaining to the performance of Silicon-On-Insulator (SOI) microdosimeters in heavy ion radiation fields. SOI microdosimeters have been previously tested in light ion radiation fields for both space and therapeutic applications, however their response has not been established in high energy, heavy ion radiation fields which are experienced in space. Irradiations were completed at the NASA Space Radiation Laboratory at BNL using 0.6 GeV/u Fe and 1.0 GeV/u Ti ions. Energy deposition and lineal energy spectra were obtained with this device at various depths within a Lucite phantom along the central axis of the beam. The response of which was compared with existing proportional counter data to assess the applicability of SOI microdosimeters to future deployments in space missions.


Medical Physics | 2004

The role of nonelastic reactions in absorbed dose distributions from therapeutic proton beams in different medium

A Wroe; Iwan Cornelius; Anatoly B. Rosenfeld

Many new techniques for delivering radiation therapy are being developed for the treatment of cancer. One of these, proton therapy, is becoming increasingly popular because of the precise way in which protons deliver dose to the tumor volume. In order to achieve this level of precision, extensive treatment planning needs to be carried out to determine the optimum beam energies, energy spread (which determines the width of the spread-out Bragg peak), and angles for each patients treatment. Due to the level of precision required and advancements in computer technology, there is increasing interest in the use of Monte Carlo calculations for treatment planning in proton therapy. However, in order to achieve optimum simulation times, nonelastic nuclear interactions between protons and the target nucleus within the patients internal structure are often not accounted for or are simulated using less accurate models such as analytical or ray tracing. These interactions produce high LET particles such as neutrons, alpha particles, and recoil protons, which affect the dose distribution and biological effectiveness of the beam. This situation has prompted an investigation of the importance of nonelastic products on depth dose distributions within various materials including water, A-150 tissue equivalent plastic, ICRP (International Commission on Radiological Protection) muscle, ICRP bone, and ICRP adipose. This investigation was conducted utilizing the GEANT4.5.2 Monte Carlo hadron transport toolkit.


Radiation Research | 2013

Acute Hematological Effects of Solar Particle Event Proton Radiation in the Porcine Model

Jenine K. Sanzari; X. S. Wan; A Wroe; S. Rightnar; Keith A. Cengel; Eric S. Diffenderfer; Gabriel S. Krigsfeld; Daila S. Gridley; Ann R. Kennedy

Acute radiation sickness (ARS) is expected to occur in astronauts during large solar particle events (SPEs). One parameter associated with ARS is the hematopoietic syndrome, which can result from decreased numbers of circulating blood cells in those exposed to radiation. The peripheral blood cells are critical for an adequate immune response, and low blood cell counts can result in an increased susceptibility to infection. In this study, Yucatan minipigs were exposed to proton radiation within a range of skin dose levels expected for an SPE (estimated from previous SPEs). The proton-radiation exposure resulted in significant decreases in total white blood cell count (WBC) within 1 day of exposure, 60% below baseline control value or preirradiation values. At the lowest level of the blood cell counts, lymphocytes, neutrophils, monocytes and eosinophils were decreased up to 89.5%, 60.4%, 73.2% and 75.5%, respectively, from the preirradiation values. Monocytes and lymphocytes were decreased by an average of 70% (compared to preirradiation values) as early as 4 h after radiation exposure. Skin doses greater than 5 Gy resulted in decreased blood cell counts up to 90 days after exposure. The results reported here are similar to studies of ARS using the nonhuman primate model, supporting the use of the Yucatan minipig as an alternative. In addition, the high prevalence of hematologic abnormalities resulting from exposure to acute, whole-body SPE-like proton radiation warrants the development of appropriate countermeasures to prevent or treat ARS occurring in astronauts during space travel.


International Journal of Radiation Biology | 2013

Mechanism of hypocoagulability in proton-irradiated ferrets

Gabriel S. Krigsfeld; Alexandria R. Savage; Jenine K. Sanzari; A Wroe; Daila S. Gridley; Ann R. Kennedy

Abstract Purpose: To determine the mechanism of proton radiation- induced coagulopathy. Material and methods: Ferrets were exposed to either solar particle event (SPE)-like proton radiation at a predetermined dose rate of 0.5 Gray (Gy) per hour (h) for a total dose of 0 or 1 Gy. Blood was collected pre- and post-irradiation for a complete blood cell count or a soluble fibrin concentration analysis, to determine whether coagulation activation had occurred. Tissue was stained with an anti-fibrinogen antibody to confirm the presence of fibrin in blood vessels. Results: SPE-like proton radiation exposure resulted in coagulation cascade activation, as determined by increased soluble fibrin concentration in blood from 0.7–2.4 at 3 h, and 9.9 soluble fibrin units (p < 0.05) at 24 h post-irradiation and fibrin clots in blood vessels of livers, lungs and kidneys from irradiated ferrets. In combination with this increase in fibrin clots, ferrets had increased prothrombin time and partial thromboplastin time values post-irradiation, which are representative of the extrinsic/intrinsic coagulation pathways. Platelet counts remained at pre-irradiation values over the course of 7 days, indicating that the observed effects were not platelet-related, but instead likely to be due to radiation-induced effects on secondary hemostasis. White blood cell (WBC) counts were reduced in a statistically significant manner from 24 h through the course of the seven-day experiment. Conclusions: SPE-like proton radiation results in significant decreases in all WBC counts as well as activates secondary hemostasis; together, these data suggest severe risks to astronaut health from exposure to SPE radiation.

Collaboration


Dive into the A Wroe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerry D. Slater

Loma Linda University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B Patyal

Loma Linda University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark I. Reinhard

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A Ghebremedhin

Loma Linda University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge