A.Y. Nossent
Leiden University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A.Y. Nossent.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Tilde Eskildsen; Hanna Taipaleenmäki; Jan Stenvang; Basem M. Abdallah; Nicholas Ditzel; A.Y. Nossent; Mads Bak; Sakari Kauppinen; Moustapha Kassem
Elucidating the molecular mechanisms that regulate human stromal (mesenchymal) stem cell (hMSC) differentiation into osteogenic lineage is important for the development of anabolic therapies for treatment of osteoporosis. MicroRNAs (miRNAs) are short, noncoding RNAs that act as key regulators of diverse biological processes by mediating translational repression or mRNA degradation of their target genes. Here, we show that miRNA-138 (miR-138) modulates osteogenic differentiation of hMSCs. miRNA array profiling and further validation by quantitative RT-PCR (qRT-PCR) revealed that miR-138 was down-regulated during osteoblast differentiation of hMSCs. Overexpression of miR-138 inhibited osteoblast differentiation of hMSCs in vitro, whereas inhibition of miR-138 function by antimiR-138 promoted expression of osteoblast-specific genes, alkaline phosphatase (ALP) activity, and matrix mineralization. Furthermore, overexpression of miR-138 reduced ectopic bone formation in vivo by 85%, and conversely, in vivo bone formation was enhanced by 60% when miR-138 was antagonized. Target prediction analysis and experimental validation by luciferase 3′ UTR reporter assay confirmed focal adhesion kinase, a kinase playing a central role in promoting osteoblast differentiation, as a bona fide target of miR-138. We show that miR-138 attenuates bone formation in vivo, at least in part by inhibiting the focal adhesion kinase signaling pathway. Our findings suggest that pharmacological inhibition of miR-138 by antimiR-138 could represent a therapeutic strategy for enhancing bone formation in vivo.
International Journal of Molecular Sciences | 2013
Tilde Eskildsen; Pia L Jeppesen; Mikael Schneider; A.Y. Nossent; Maria B. Sandberg; Pernille B. Lærkegaard Hansen; Charlotte Harken Jensen; Maria Lyck Hansen; Niels Marcussen; Lars Melholt Rasmussen; Peter Bie; Ditte Caroline Andersen; Søren Paludan Sheikh
MicroRNAs (miRNAs), a group of small non-coding RNAs that fine tune translation of multiple target mRNAs, are emerging as key regulators in cardiovascular development and disease. MiRNAs are involved in cardiac hypertrophy, heart failure and remodeling following cardiac infarction; however, miRNAs involved in hypertension have not been thoroughly investigated. We have recently reported that specific miRNAs play an integral role in Angiotensin II receptor (AT1R) signaling, especially after activation of the Gαq signaling pathway. Since AT1R blockers are widely used to treat hypertension, we undertook a detailed analysis of potential miRNAs involved in Angiotensin II (AngII) mediated hypertension in rats and hypertensive patients, using miRNA microarray and qPCR analysis. The miR-132 and miR-212 are highly increased in the heart, aortic wall and kidney of rats with hypertension (159 ± 12 mm Hg) and cardiac hypertrophy following chronic AngII infusion. In addition, activation of the endothelin receptor, another Gαq coupled receptor, also increased miR-132 and miR-212. We sought to extend these observations using human samples by reasoning that AT1R blockers may decrease miR-132 and miR-212. We analyzed tissue samples of mammary artery obtained from surplus arterial tissue after coronary bypass operations. Indeed, we found a decrease in expression levels of miR-132 and miR-212 in human arteries from bypass-operated patients treated with AT1R blockers, whereas treatment with β-blockers had no effect. Taken together, these data suggest that miR-132 and miR-212 are involved in AngII induced hypertension, providing a new perspective in hypertensive disease mechanisms.
Experimental Cell Research | 2010
Ditte Caroline Andersen; Charlotte Harken Jensen; Mikael Schneider; A.Y. Nossent; Tilde Eskildsen; Jakob Lerche Hansen; Børge Teisner; Søren Paludan Sheikh
Delta like 1 homolog (Dlk1) exists in both transmembrane and soluble molecular forms, and is implicated in cellular growth and plays multiple roles in development, tissue regeneration, and cancer. Thus, DLK1 levels are critical for cell function, and abnormal DLK1 expression can be lethal; however, little is known about the underlying mechanisms. We here report that miR-15a modulates DLK1 levels in preadipocytes thus providing a mechanism for DLK1 regulation that further links it to cell cycle arrest and cancer since miR-15a is deregulated in these processes. In preadipocytes, miR-15a increases with cell density, and peaks at the same stage where membrane DLK1(M) and soluble DLK1(S) are found at maximum levels. Remarkably, miR-15a represses the amount of all Dlk1 variants at the mRNA level but also the level of DLK1(M) protein while it increases the amount of DLK1(S) supporting a direct repression of DLK1 and a parallel effect on the protease that cleaves off the DLK1 from the membrane. In agreement with previous studies, we found that miR-15a represses cell numbers, but additionally, we report that miR-15a also increases cell size. Conversely, anti-miR-15a treatment decreases cell size while increasing cell numbers, scenarios that were completely rescued by addition of purified DLK1(S). Our data thus imply that miR-15a regulates cell size and proliferation by fine-tuning Dlk1 among others, and further emphasize miR-15a and DLK1 levels to play important roles in growth signaling networks.
British Journal of Pharmacology | 2011
Pia L Jeppesen; Gitte Lund Christensen; Mikael Schneider; A.Y. Nossent; Hasse Brønnum Jensen; Ditte Caroline Andersen; Tilde Eskildsen; Steen Gammeltoft; Jakob Lerche Hansen; Søren Paludan Sheikh
BACKGROUND AND PURPOSE The angiotensin II type 1 receptor (AT1R) is a key regulator of blood pressure and cardiac contractility and is profoundly involved in development of cardiac disease. Since several microRNAs (miRNAs) have been implicated in cardiac disease, we determined whether miRNAs might be regulated by AT1R signals in a Gαq/11‐dependent or ‐independent manner.
Cardiovascular Research | 2016
Sabine M.J. Welten; Eac Goossens; Paul H.A. Quax; A.Y. Nossent
Vascular remodelling is a multifactorial process that involves both adaptive and maladaptive changes of the vessel wall through, among others, cell proliferation and migration, but also apoptosis and necrosis of the various cell types in the vessel wall. Vascular remodelling can be beneficial, e.g. during neovascularization after ischaemia, as well as pathological, e.g. during atherosclerosis and aneurysm formation. In recent years, it has become clear that microRNAs are able to target many genes that are involved in vascular remodelling processes and either can promote or inhibit structural changes of the vessel wall. Since many different processes of vascular remodelling are regulated by similar mechanisms and factors, both positive and negative vascular remodelling can be affected by the same microRNAs. A large number of microRNAs has been linked to various aspects of vascular remodelling and indeed, several of these microRNAs regulate multiple vascular remodelling processes, including both the adaptive processes angiogenesis and arteriogenesis as well as maladaptive processes of atherosclerosis, restenosis and aneurysm formation. Here, we discuss the multifactorial role of microRNAs and microRNA clusters that were reported to play a role in multiple forms of vascular remodelling and are clearly linked to cardiovascular disease (CVD). The microRNAs reviewed are miR-126, miR-155 and the microRNA gene clusters 17-92, 23/24/27, 143/145 and 14q32. Understanding the contribution of these microRNAs to the entire spectrum of vascular remodelling processes is important, especially as these microRNAs may have great potential as therapeutic targets for treatment of various CVDs.
Epilepsia | 2014
Sanne S. Kaalund; Morten T. Venø; Mads Bak; Rikke S. Møller; Henning Laursen; Flemming Madsen; Helle Broholm; Bjørn Quistorff; Peter Uldall; Niels Tommerup; Sakari Kauppinen; Anne Sabers; Kees Fluiter; Lisbeth Birk Møller; A.Y. Nossent; Asli Silahtaroglu; Jørgen Kjems; Eleonora Aronica; Zeynep Tümer
Mesial temporal lobe epilepsy (MTLE) is one of the most common types of the intractable epilepsies and is most often associated with hippocampal sclerosis (HS), which is characterized by pronounced loss of hippocampal pyramidal neurons. microRNAs (miRNAs) have been shown to be dysregulated in epilepsy and neurodegenerative diseases, and we hypothesized that miRNAs could be involved in the pathogenesis of MTLE and HS.
Experimental Cell Research | 2013
Hasse Brønnum; Ditte Caroline Andersen; Mikael Schneider; A.Y. Nossent; Solveig Beck Nielsen; Søren Paludan Sheikh
Recent reports suggest that the adult epicardium is a source of cardiac progenitor cells having the ability to undergo epithelial-to-mesenchymal transition (EMT) and predominantly differentiate into myofibroblasts, thereby contributing to fibrosis of the stressed myocardium. Islet-1 (Isl1) is a widely applied marker of progenitor cells, including the epicardial mesothelial cells (EMCs). However, little is known of the general biological function of Islet-1, let alone its role in EMT of EMCs. Using rat-derived adult EMC cultures we therefore investigated the role of Isl1 expression in both non-stimulated EMCs and during TGF-β-induced EMT. We found that Isl1 had a dual role by promoting mesenchymal features in non-stimulated EMCs, while a loss of Isl1 associated with EMT acted as a negative modulator of EMT progression as assessed on phenotype. We furthermore found that the loss of Isl1 expression during EMT was, in addition to transcriptional regulation by β-catenin, mediated through direct targeting by microRNA-31 (miR-31). Through manipulations of miR-31 bioactivity in EMCs, we thus report that miR-31 is a negative modulator of cardiac fibrogenic EMT, primarily via targeting Isl1. Our data show that Isl1 is a key regulatory molecule in adult cardiac EMT.
PLOS ONE | 2013
Lisa G. van den Hengel; Alwine A. Hellingman; A.Y. Nossent; Annemarie M. van Oeveren-Rietdijk; Margreet R. de Vries; C. Arnold Spek; Anton Jan van Zonneveld; P. H. Reitsma; Jaap F. Hamming; Hetty C. de Boer; Henri H. Versteeg; Paul H.A. Quax
Aims In collateral development (i.e. arteriogenesis), mononuclear cells are important and exist as a heterogeneous population consisting of pro-inflammatory and anti-inflammatory/repair-associated cells. Protease-activated receptor (PAR)1 and PAR2 are G-protein-coupled receptors that are both expressed by mononuclear cells and are involved in pro-inflammatory reactions, while PAR2 also plays a role in repair-associated responses. Here, we investigated the physiological role of PAR1 and PAR2 in arteriogenesis in a murine hind limb ischemia model. Methods and Results PAR1-deficient (PAR1-/-), PAR2-deficient (PAR2-/-) and wild-type (WT) mice underwent femoral artery ligation. Laser Doppler measurements revealed reduced post-ischemic blood flow recovery in PAR2-/- hind limbs when compared to WT, while PAR1-/- mice were not affected. Upon ischemia, reduced numbers of smooth muscle actin (SMA)-positive collaterals and CD31-positive capillaries were found in PAR2-/- mice when compared to WT mice, whereas these parameters in PAR1-/- mice did not differ from WT mice. The pool of circulating repair-associated (Ly6C-low) monocytes and the number of repair-associated (CD206-positive) macrophages surrounding collaterals in the hind limbs were increased in WT and PAR1-/- mice, but unaffected in PAR2-/- mice. The number of repair-associated macrophages in PAR2-/- hind limbs correlated with CD11b- and CD115-expression on the circulating monocytes in these animals, suggesting that monocyte extravasation and M-CSF-dependent differentiation into repair-associated cells are hampered. Conclusion PAR2, but not PAR1, is involved in arteriogenesis and promotes the repair-associated response in ischemic tissues. Therefore, PAR2 potentially forms a new pro-arteriogenic target in coronary artery disease (CAD) patients.
International Journal of Cardiology | 2014
Mieke C. Louwe; Jacco C. Karper; M.R. de Vries; A.Y. Nossent; A.J.N.M. Bastiaansen; J.W.A. van der Hoorn; K. Willems van Dijk; P.C.N. Rensen; Paul Steendijk; Johannes W. A. Smit; Paul H.A. Quax
BACKGROUND Toll-like receptor-4 (TLR4), a receptor of the innate immune system, is suggested to have detrimental effects on cardiac function after myocardial infarction (MI). RP105 (CD180) is a TLR4 homolog lacking the intracellular signaling domain that competitively inhibits TLR4-signaling. Thus, we hypothesized that RP105 deficiency, by amplifying TLR4 signaling, would lead to aggravated cardiac dysfunction after MI. METHODS AND RESULTS First, whole blood from RP105-/- and wild-type (WT) male C57Bl/6N mice was stimulated with LPS, which induced a strong inflammatory TNFα response in RP105-/- mice. Then, baseline heart function was assessed by left ventricular pressure-volume relationships which were not different between RP105-/- and WT mice. Permanent ligation of the left anterior descending coronary artery was performed to induce MI. Infarct sizes were analyzed by (immuno)histology and did not differ. Fifteen days post MI heart function was assessed and RP105-/- mice had significantly higher heart rate (+21%, P<0.01), end systolic volume index (+57%, P<0.05), end systolic pressure (+22%, P<0.05) and lower relaxation time constant tau (-12%, P<0.05), and a tendency for increased end diastolic volume index (+42%, P<0.06), compared to WT mice. In the area adjacent to the infarct zone, compared to the healthy myocardium, levels of RP105, TLR4 and the endogenous TLR4 ligand fibronectin-EDA were increased as well as the number of macrophages, however this was not different between both groups. CONCLUSION Deficiency of the endogenous TLR4 inhibitor RP105 leads to an enhanced inflammatory status and more pronounced cardiac dilatation after induction of MI, underscoring the role of the TLR4 pathway in post-infarction remodeling.
International Journal of Cardiology | 2018
Karin H. Simons; Z. Aref; H.A.B. Peters; S.P. Welten; A.Y. Nossent; J.W. Jukema; Jaap F. Hamming; Ramon Arens; M.R. de Vries; Paul H.A. Quax
BACKGROUND T cells have a distinctive role in neovascularization, which consists of arteriogenesis and angiogenesis under pathological conditions and vasculogenesis under physiological conditions. However, the role of co-stimulation in T cell activation in neovascularization has yet to be established. The aim of this study was to investigate the role T cell co-stimulation and inhibition in angiogenesis, arteriogenesis and vasculogenesis. METHODS AND RESULTS Hind limb ischemia was induced by double ligation of the left femoral artery in mice and blood flow recovery was measured with Laser Doppler Perfusion Imaging in control, CD70-/-, CD80/86-/-, CD70/80/86-/- and CTLA4+/- mice. Blood flow recovery was significantly impaired in mice lacking CD70 compared to control mice, but was similar in CD80/86-/-, CTLA4+/- and control mice. Mice lacking CD70 showed impaired vasculogenesis, since the number of pre-existing collaterals was reduced as observed in the pia mater compared to control mice. In vitro an impaired capability of vascular smooth muscle cells (VSMC) to activate T cells was observed in VSMC lacking CD70. Furthermore, CD70-/-, CD80/86-/- and CD70/80/86-/- mice showed reduced angiogenesis in the soleus muscle 10 days after ligation. Arteriogenesis was also decreased in CD70-/- compared to control mice 10 and 28 days after surgery. CONCLUSIONS The present study is the first to describe an important role for T cell activation via co-stimulation in angiogenesis, arteriogenesis and vasculogenesis, where the CD27-CD70 T cell co-stimulation pathway appears to be the most important co-stimulation pathway in pre-existing collateral formation and post-ischemic blood flow recovery, by arteriogenesis and angiogenesis.