A. Zaïr
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Zaïr.
Optics Express | 2007
A. Zaïr; Anna Guandalini; Florian Schapper; Mirko Holler; Jens Biegert; Lukas Gallmann; Arnaud Couairon; Michel Franco; A. Mysyrowicz; U. Keller
Intense sub-5-fs pulses were generated by filamentation in a noble gas and subsequent chirped-mirror pulse compression. The transversal spatial dependence of the temporal pulse profile was investigated by spatial selection of parts of the output beam. Selecting the central core of the beam is required for obtaining the shortest possible pulses. Higher energy efficiency is only obtained at the expense of pulse contrast since towards the outer parts of the beam the energy is spread into satellite structures leading to a double-pulse profile on the very off-axis part of the beam. Depending on the requirements for a particular application, a trade-off between the pulse duration and the pulse energy has to be done. The energy of the sub-5-fs pulses produced was sufficient for the generation of high order harmonics in Argon. In addition, full simulation is performed in space and time on pulse propagation through filamentation that explains the double-pulse structure observed as part of a conical emission enhanced by the plasma defocusing.
Physical Review Letters | 2013
J. A. Pérez-Hernández; Marcelo F. Ciappina; Maciej Lewenstein; Luis Roso; A. Zaïr
We present numerical simulations of high-order harmonic generation in helium using a temporally synthesized and spatially nonhomogeneous strong laser field. The combination of temporal and spatial laser field synthesis results in a dramatic cutoff extension far beyond the usual semiclassical limit. Our predictions are based on the convergence of three complementary approaches: resolution of the three dimensional time dependent Schrödinger equation, time-frequency analysis of the resulting dipole moment, and classical trajectory extraction. A laser field synthesized both spatially and temporally has been proven capable of generating coherent extreme ultraviolet photons beyond the carbon K edge, an energy region of high interest as it can be used to initiate inner-shell dynamics and study time-resolved intramolecular attosecond spectroscopy.
Reports on Progress in Physics | 2017
Marcello F. Ciappina; J. A. Pérez-Hernández; Alexandra S. Landsman; William Okell; Sergey Zherebtsov; Benjamin Förg; Johannes Schötz; J. L. Seiffert; Thomas Fennel; T. Shaaran; T. Zimmermann; A. Chacón; R. Guichard; A. Zaïr; J. W. G. Tisch; Jonathan P. Marangos; Tobias Witting; Avi Braun; Stefan A. Maier; L. Roso; Michael Krüger; Peter Hommelhoff; Matthias F. Kling; Ferenc Krausz; Maciej Lewenstein
Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond = 1 as = 10-18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution.
Journal of Physics B | 2012
R. A. Ganeev; C. Hutchison; Tobias Witting; F. Frank; W. A. Okell; A. Zaïr; Sébastien Weber; P.V. Redkin; Dang Yuan Lei; Tyler Roschuk; Stefan A. Maier; Ignacio Lopez-Quintas; Margarita Martín; Marta Castillejo; J. W. G. Tisch; Jonathan P. Marangos
High-order harmonic generation in graphite-ablated plasmas was systematically studied using ultrashort (3.5 and 30 fs) laser pulses. We observed the efficient frequency conversion of 3.5 fs Ti:sapphire laser pulses in the range of 15-26 eV. Stabilization of the harmonic yield at a 1 kHz pulse repetition rate was accomplished using a rotating graphite target. We also show the results of harmonic generation in carbon plasma using 1300 nm, 40 ps pulses, which allowed the extension of the harmonic cutoff while maintaining a comparable conversion efficiency to the case of 780 nm driving radiation. The time-of-flight mass spectrometric analysis of the plasma components and the scanning electron microscopy of plasma debris under optimal conditions for harmonic generation suggest the presence of small carbon clusters (C10-C30 )i n the plasma plume at the moment of femtosecond pulse propagation, which further aggregate on nearby substrates. We present the results of plasma spectroscopy obtained under unoptimized plasma conditions that elucidate the reduction in harmonic signal. We also present calculations of plasma concentration under different excitation conditions of the ablated graphite target. (Some figures may appear in colour only in the online journal)
Optics Express | 2010
Thomas Siegel; R. Torres; David J. Hoffmann; Leonardo Brugnera; Immacolata Procino; A. Zaïr; Jonathan G. Underwood; E. Springate; I. C. E. Turcu; L. Chipperfield; J. P. Marangos
We report observations and analysis of high harmonic generation driven by a superposition of fields at 1290 nm and 780 nm. These fields are not commensurate in frequency and the superposition leads to an increase in the yield of the mid-plateau harmonics of more than two orders of magnitude compared to using the 1290 nm field alone. Significant extension of the cut-off photon energy is seen even by adding only a small amount of the 780 nm field. These observations are explained by calculations performed in the strong field approximation. Most importantly we find that enhancement is found to arise as a consequence of both increased ionization in the sum-field and modification of the electron trajectories leading to an earlier return time. The enhanced yield even when using modest intensity fields of 5 x 10(13) Wcm(-2) is extended to the 80 eV range and is a promising route to provide a greater photon number for applications in XUV imaging and time-resolved experiments at a high repetition rate.
Optics Express | 2012
R. A. Ganeev; C. Hutchison; A. Zaïr; Tobias Witting; F. Frank; W. A. Okell; J. W. G. Tisch; J. P. Marangos
We have investigated resonance effects in high-order harmonic generation (HHG) within laser-produced plasmas. We demonstrate a significantly improved harmonic yield by using two-color pump-induced enhancement and a 1 kHz pulse repetition rate. Together with an increased HHG output, the even harmonics in the cutoff region were enhanced with respect to odd harmonics. We report the observation of a resonance-induced growth in intensity of 20th harmonic in silver plasma (2×), 26th harmonic in vanadium plasma (4×), and 28th harmonic in chromium plasma (5×).
Optics Express | 2012
R. A. Ganeev; Tobias Witting; C. Hutchison; F. Frank; Maria Tudorovskaya; Manfred Lein; W. A. Okell; A. Zaïr; Jonathan P. Marangos; J. W. G. Tisch
We report studies of high-order harmonic generation in laser-produced manganese plasmas using sub-4-fs drive laser pulses. The measured spectra exhibit resonant enhancement of a small spectral region of about 2.5 eV width around the 31st harmonic (~50eV). The intensity contrast relative to the directly adjacent harmonics exceeds one order of magnitude. This finding is in sharp contrast to the results reported previously for multi-cycle laser pulses [Physical Review A 76, 023831 (2007)]. Theoretical modelling suggests that the enhanced harmonic emission forms an isolated sub-femtosecond pulse.
Optics Express | 2010
Florian Schapper; Mirko Holler; T. Auguste; A. Zaïr; Matthias Weger; P. Salières; Lukas Gallmann; Ursula Keller
We have spatially and spectrally resolved the high order harmonic emission from an argon gas target. Under proper phase matching conditions we were able to observe for the first time the spatial fine structure originating from the interference of the two shortest quantum paths in the harmonic beam. The structure can be explained by the intensity-dependent harmonic phase of the contributions from the two paths. The spatially and spectrally resolved measurements are consistent with previous spatially integrated results. Our measurement method represents a new tool to clearly distinguish between different interference effects and to potentially observe higher order trajectories in the future with improved detection sensitivity. Here, we demonstrate additional experimental evidence that the observed interference pattern is only due to quantum-path interferences and cannot be explained by a phase modulation effect. Our experimental results are fully supported by simulations using the strong field approximation and including propagation.
Physical Chemistry Chemical Physics | 2013
C. Hutchison; R. A. Ganeev; Marta Castillejo; Ignacio Lopez-Quintas; A. Zaïr; Sébastien Weber; Felicity McGrath; Zara Abdelrahman; Malte Oppermann; Margarita Martín; Dang Yuan Lei; Stefan A. Maier; J. W. G. Tisch; Jonathan P. Marangos
We present studies of high-order harmonic generation (HHG) in laser ablation plumes of the ribonucleic acid nucleobase uracil and its deoxyribonucleic acid counterpart thymine. Harmonics were generated using 780 nm, 30 fs and 1300 nm, 40 fs radiation upon ablation with 1064 nm, 10 ns or 780 nm, 160 ps pulses. Strong HHG signals were observed from uracil plumes with harmonics emitted with photon energies >55 eV. Results obtained in uracil plumes were compared with those from thymine, which did not yield signs of harmonic generation. The ablation plumes of the two compounds were examined by collection of the ablation debris on a silicon substrate placed in close proximity to the target and by time-of-flight mass spectrometry. From this evidence we conclude that the differences in HHG signal are due to the different fragmentation dynamics of the molecules in the plasma plume. These studies constitute the first attempt to analyse differences in structural properties of complex molecules through plasma ablation-induced HHG spectroscopy.
Laser Physics Letters | 2013
M. F. Ciappina; T Shaaran; R Guichard; J A Pérez-Hernández; Luis Roso; Martin Arnold; Thomas Siegel; A. Zaïr; M Lewenstein
We study theoretically photoelectron emission in noble gases using plasmonic enhanced near-fields. We demonstrate that these fields have a great potential to generate high energy electrons by direct excitation from mid-infrared laser pulses of current femtosecond oscillators. Typically, these fields appear in the surroundings of plasmonic nanostructures with various geometrical shapes, such as bow-ties, metallic waveguides, metal nanoparticles and nanotips, when illuminated by a short laser pulse. Here, we consider metal nanospheres, in which the spatial decay of the near-field of the isolated nanoparticle can be approximated by an exponential function according to recent attosecond streaking measurements. We establish that the strong spatial inhomogeneous character of the enhanced near-field plays an important role in the above threshold ionization (ATI) process and leads to a significant extension in the photoelectron spectra. In this work, we employ the one-dimensional time-dependent Schrodinger equation to calculate the photoelectron emission of xenon atoms in such enhanced near-fields. Our findings are supported by classical calculations.