Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aadel A. Chaudhuri is active.

Publication


Featured researches published by Aadel A. Chaudhuri.


Nature Reviews Immunology | 2010

Physiological and pathological roles for microRNAs in the immune system

Ryan M. O'Connell; Dinesh S. Rao; Aadel A. Chaudhuri; David Baltimore

Mammalian microRNAs (miRNAs) have recently been identified as important regulators of gene expression, and they function by repressing specific target genes at the post-transcriptional level. Now, studies of miRNAs are resolving some unsolved issues in immunology. Recent studies have shown that miRNAs have unique expression profiles in cells of the innate and adaptive immune systems and have pivotal roles in the regulation of both cell development and function. Furthermore, when miRNAs are aberrantly expressed they can contribute to pathological conditions involving the immune system, such as cancer and autoimmunity; they have also been shown to be useful as diagnostic and prognostic indicators of disease type and severity. This Review discusses recent advances in our understanding of both the intended functions of miRNAs in managing immune cell biology and their pathological roles when their expression is dysregulated.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Inositol phosphatase SHIP1 is a primary target of miR-155

Ryan M. O'Connell; Aadel A. Chaudhuri; Dinesh S. Rao; David Baltimore

MicroRNA-155 (miR-155) has emerged as a critical regulator of immune cell development, function, and disease. However, the mechanistic basis for its impact on the hematopoietic system remains largely unresolved. Because miRNAs function by repressing specific mRNAs through direct 3′UTR interactions, we have searched for targets of miR-155 implicated in the regulation of hematopoiesis. In the present study, we identify Src homology-2 domain-containing inositol 5-phosphatase 1 (SHIP1) as a direct target of miR-155, and, using gain and loss of function approaches, show that miR-155 represses SHIP1 through direct 3′UTR interactions that have been highly conserved throughout evolution. Repression of endogenous SHIP1 by miR-155 occurred following sustained over-expression of miR-155 in hematopoietic cells both in vitro and in vivo, and resulted in increased activation of the kinase Akt during the cellular response to LPS. Furthermore, SHIP1 was also repressed by physiologically regulated miR-155, which was observed in LPS-treated WT versus miR-155−/− primary macrophages. In mice, specific knockdown of SHIP1 in the hematopoietic system following retroviral delivery of a miR-155-formatted siRNA against SHIP1 resulted in a myeloproliferative disorder, with striking similarities to that observed in miR-155-expressing mice. Our study unveils a molecular link between miR-155 and SHIP1 and provides evidence that repression of SHIP1 is an important component of miR-155 biology.


Immunity | 2010

MicroRNA-155 Promotes Autoimmune Inflammation by Enhancing Inflammatory T Cell Development

Ryan M. O'Connell; Daniel Kahn; William S. J. Gibson; June L. Round; Rebecca L. Scholz; Aadel A. Chaudhuri; Melissa Kahn; Dinesh S. Rao; David Baltimore

Mammalian noncoding microRNAs (miRNAs) are a class of gene regulators that have been linked to immune system function. Here, we have investigated the role of miR-155 during an autoimmune inflammatory disease. Consistent with a positive role for miR-155 in mediating inflammatory responses, Mir155(-/-) mice were highly resistant to experimental autoimmune encephalomyelitis (EAE). miR-155 functions in the hematopoietic compartment to promote the development of inflammatory T cells including the T helper 17 (Th17) cell and Th1 cell subsets. Furthermore, the major contribution of miR-155 to EAE was CD4(+) T cell intrinsic, whereas miR-155 was also required for optimum dendritic cell production of cytokines that promoted Th17 cell formation. Our study shows that one aspect of miR-155 function is the promotion of T cell-dependent tissue inflammation, suggesting that miR-155 might be a promising therapeutic target for the treatment of autoimmune disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2010

MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output

Ryan M. O'Connell; Aadel A. Chaudhuri; Dinesh S. Rao; William S. J. Gibson; Alejandro B. Balazs; David Baltimore

The production of blood cells depends on a rare hematopoietic stem-cell (HSC) population, but the molecular mechanisms underlying HSC biology remain incompletely understood. Here, we identify a subset of microRNAs (miRNAs) that is enriched in HSCs compared with other bone-marrow cells. An in vivo gain-of-function screen found that three of these miRNAs conferred a competitive advantage to engrafting hematopoietic cells, whereas other HSC miRNAs attenuated production of blood cells. Overexpression of the most advantageous miRNA, miR-125b, caused a dose-dependent myeloproliferative disorder that progressed to a lethal myeloid leukemia in mice and also enhanced hematopoietic engraftment in human immune system mice. Our study identifies an evolutionarily conserved subset of miRNAs that is expressed in HSCs and functions to modulate hematopoietic output.


Journal of Immunology | 2011

MicroRNA-125b potentiates macrophage activation.

Aadel A. Chaudhuri; Alex Yick-Lun So; Nikita Sinha; William S. J. Gibson; Konstantin D. Taganov; Ryan M. O'Connell; David Baltimore

MicroRNA (miR)-125b expression is modulated in macrophages in response to stimulatory cues. In this study, we report a functional role of miR-125b in macrophages. We found that miR-125b is enriched in macrophages compared with lymphoid cells and whole immune tissues. Enforced expression of miR-125b drives macrophages to adapt an activated morphology that is accompanied by increased costimulatory factor expression and elevated responsiveness to IFN-γ, whereas anti–miR-125b treatment decreases CD80 surface expression. To determine whether these alterations in cell signaling, gene expression, and morphology have functional consequences, we examined the ability of macrophages with enhanced miR-125b expression to present Ags and found that they better stimulate T cell activation than control macrophages. Further indicating increased function, these macrophages were more effective at killing EL4 tumor cells in vitro and in vivo. Moreover, miR-125b repressed IFN regulatory factor 4 (IRF4), and IRF4 knockdown in macrophages mimicked the miR-125b overexpression phenotype. In summary, our evidence suggests that miR-125b is at least partly responsible for generating the activated nature of macrophages, at least partially by reducing IRF4 levels, and potentiates the functional role of macrophages in inducing immune responses.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A

Aadel A. Chaudhuri; Alex Yick-Lun So; Arnav Mehta; Aarathi Minisandram; Nikita Sinha; Vanessa Jonsson; Dinesh S. Rao; Ryan M. O'Connell; David Baltimore

MicroRNA-125b (miR-125b) is up-regulated in patients with leukemia. Overexpression of miR-125b alone in mice causes a very aggressive, transplantable myeloid leukemia. Before leukemia, these mice do not display elevation of white blood cells in the spleen or bone marrow; rather, the hematopoietic compartment shows lineage-skewing, with myeloid cell numbers dramatically increased and B-cell numbers severely diminished. miR-125b exerts this effect by up-regulating the number of common myeloid progenitors while inhibiting development of pre-B cells. We applied a miR-125b sponge loss of function system in vivo to show that miR-125b physiologically regulates hematopoietic development. Investigating the mechanism by which miR-125b regulates hematopoiesis, we found that, among a panel of candidate targets, the mRNA for Lin28A, an induced pluripotent stem cell gene, was most repressed by miR-125b in mouse hematopoietic stem and progenitor cells. Overexpressing Lin28A in the mouse hematopoietic system mimicked the phenotype observed on inhibiting miR-125b function, leading to a decrease in hematopoietic output. Relevant to the miR-125b overexpression phenotype, we also found that knockdown of Lin28A led to hematopoietic lineage-skewing, with increased myeloid and decreased B-cell numbers. Thus, the miR-125b target Lin28A is an important regulator of hematopoiesis and a primary target of miR-125b in the hematopoietic system.


Journal of Immunology | 2013

MicroRNA-155 Confers Encephalogenic Potential to Th17 Cells by Promoting Effector Gene Expression

Ruozhen Hu; Thomas B. Huffaker; Dominique A. Kagele; Marah C. Runtsch; Erin Bake; Aadel A. Chaudhuri; June L. Round; Ryan M. O'Connell

Th17 cells are central to the pathogenesis of autoimmune disease, and recently specific noncoding microRNAs have been shown to regulate their development. However, it remains unclear whether microRNAs are also involved in modulating Th17 cell effector functions. Consequently, we examined the role of miR-155 in differentiated Th17 cells during their induction of experimental autoimmune encephalomyelitis. Using adoptive transfer experiments, we found that highly purified, myelin oligodendrocyte glycoprotein Ag-specific Th17 cells lacking miR-155 were defective in their capacity to cause experimental autoimmune encephalomyelitis. Gene expression profiling of purified miR-155−/−IL-17F+ Th17 cells identified a subset of effector genes that are dependent on miR-155 for their proper expression through a mechanism involving repression of the transcription factor Ets1. Among the genes reduced in the absence of miR-155 was IL-23R, resulting in miR-155−/− Th17 cells being hyporesponsive to IL-23. Taken together, our study demonstrates a critical role for miR-155 in Th17 cells as they unleash autoimmune inflammation and finds that this occurs through a signaling network involving miR-155, Ets1, and the clinically relevant IL-23–IL-23R pathway.


Cancer Discovery | 2017

Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling

Aadel A. Chaudhuri; Jacob J. Chabon; Alexander F. Lovejoy; Aaron M. Newman; Henning Stehr; Tej D. Azad; Michael S. Khodadoust; Mohammad Shahrokh Esfahani; Chih Long Liu; Li Zhou; Florian Scherer; David M. Kurtz; Carmen Say; J.N. Carter; D.J. Merriott; Jonathan C. Dudley; Michael S. Binkley; L.A. Modlin; Sukhmani K. Padda; M.F. Gensheimer; Robert B. West; Joseph B. Shrager; Joel W. Neal; Heather A. Wakelee; Billy W. Loo; Ash A. Alizadeh; Maximilian Diehn

Identifying molecular residual disease (MRD) after treatment of localized lung cancer could facilitate early intervention and personalization of adjuvant therapies. Here, we apply cancer personalized profiling by deep sequencing (CAPP-seq) circulating tumor DNA (ctDNA) analysis to 255 samples from 40 patients treated with curative intent for stage I-III lung cancer and 54 healthy adults. In 94% of evaluable patients experiencing recurrence, ctDNA was detectable in the first posttreatment blood sample, indicating reliable identification of MRD. Posttreatment ctDNA detection preceded radiographic progression in 72% of patients by a median of 5.2 months, and 53% of patients harbored ctDNA mutation profiles associated with favorable responses to tyrosine kinase inhibitors or immune checkpoint blockade. Collectively, these results indicate that ctDNA MRD in patients with lung cancer can be accurately detected using CAPP-seq and may allow personalized adjuvant treatment while disease burden is lowest.Significance: This study shows that ctDNA analysis can robustly identify posttreatment MRD in patients with localized lung cancer, identifying residual/recurrent disease earlier than standard-of-care radiologic imaging, and thus could facilitate personalized adjuvant treatment at early time points when disease burden is lowest. Cancer Discov; 7(12); 1394-403. ©2017 AACR.See related commentary by Comino-Mendez and Turner, p. 1368This article is highlighted in the In This Issue feature, p. 1355.


Cancer Discovery | 2017

Role of KEAP1/NRF2 and TP53 Mutations in Lung Squamous Cell Carcinoma Development and Radiation Resistance

Youngtae Jeong; Ngoc T. Hoang; Alexander F. Lovejoy; Henning Stehr; Aaron M. Newman; Andrew J. Gentles; William Kong; Diana Truong; Shanique Martin; Aadel A. Chaudhuri; Diane Heiser; Li Zhou; Carmen Say; J.N. Carter; Susan M. Hiniker; Billy W. Loo; Robert B. West; Philip A. Beachy; Ash A. Alizadeh; Maximilian Diehn

Lung squamous cell carcinoma (LSCC) pathogenesis remains incompletely understood, and biomarkers predicting treatment response remain lacking. Here, we describe novel murine LSCC models driven by loss of Trp53 and Keap1, both of which are frequently mutated in human LSCCs. Homozygous inactivation of Keap1 or Trp53 promoted airway basal stem cell (ABSC) self-renewal, suggesting that mutations in these genes lead to expansion of mutant stem cell clones. Deletion of Trp53 and Keap1 in ABSCs, but not more differentiated tracheal cells, produced tumors recapitulating histologic and molecular features of human LSCCs, indicating that they represent the likely cell of origin in this model. Deletion of Keap1 promoted tumor aggressiveness, metastasis, and resistance to oxidative stress and radiotherapy (RT). KEAP1/NRF2 mutation status predicted risk of local recurrence after RT in patients with non-small lung cancer (NSCLC) and could be noninvasively identified in circulating tumor DNA. Thus, KEAP1/NRF2 mutations could serve as predictive biomarkers for personalization of therapeutic strategies for NSCLCs. SIGNIFICANCE We developed an LSCC mouse model involving Trp53 and Keap1, which are frequently mutated in human LSCCs. In this model, ABSCs are the cell of origin of these tumors. KEAP1/NRF2 mutations increase radioresistance and predict local tumor recurrence in radiotherapy patients. Our findings are of potential clinical relevance and could lead to personalized treatment strategies for tumors with KEAP1/NRF2 mutations. Cancer Discov; 7(1); 86-101. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 1.


Seminars in Radiation Oncology | 2015

Predicting Radiotherapy Responses and Treatment Outcomes Through Analysis of Circulating Tumor DNA

Aadel A. Chaudhuri; Michael S. Binkley; E. Osmundson; Ash A. Alizadeh; Maximilian Diehn

Tumors continually shed DNA into the blood where it can be detected as circulating tumor DNA (ctDNA). Although this phenomenon has been recognized for decades, techniques that are sensitive and specific enough to robustly detect ctDNA have only become available recently. Quantification of ctDNA represents a new approach for cancer detection and disease burden quantification that has the potential to revolutionize response assessment and personalized treatment in radiation oncology. Analysis of ctDNA has many potential applications, including detection of minimal residual disease following radiotherapy, noninvasive tumor genotyping, and early detection of tumor recurrence. Ultimately, ctDNA-based assays could lead to personalization of therapy based on identification of somatic alterations present in tumors and changes in ctDNA concentrations before and after treatment. In this review, we discuss methods of ctDNA detection and clinical applications of ctDNA-based biomarkers in radiation oncology, with a focus on recently developed techniques that use next-generation sequencing for ctDNA quantification.

Collaboration


Dive into the Aadel A. Chaudhuri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Baltimore

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge