Aalap Chokshi
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aalap Chokshi.
Circulation | 2012
Aalap Chokshi; Konstantinos Drosatos; Faisal H. Cheema; Ruiping Ji; Tuba Khawaja; Shuiqing Yu; Tomoko S. Kato; Raffay Khan; Hiroo Takayama; Ralph Knöll; Hendrik Milting; Christine Chung; Ulrich P. Jorde; Yoshifumi Naka; Donna Mancini; Ira J. Goldberg; P. Christian Schulze
Background— Heart failure is associated with impaired myocardial metabolism with a shift from fatty acids to glucose use for ATP generation. We hypothesized that cardiac accumulation of toxic lipid intermediates inhibits insulin signaling in advanced heart failure and that mechanical unloading of the failing myocardium corrects impaired cardiac metabolism. Methods and Results— We analyzed the myocardium and serum of 61 patients with heart failure (body mass index, 26.5±5.1 kg/m2; age, 51±12 years) obtained during left ventricular assist device implantation and at explantation (mean duration, 185±156 days) and from 9 control subjects. Systemic insulin resistance in heart failure was accompanied by decreased myocardial triglyceride and overall fatty acid content but increased toxic lipid intermediates, diacylglycerol, and ceramide. Increased membrane localization of protein kinase C isoforms, inhibitors of insulin signaling, and decreased activity of insulin signaling molecules Akt and Foxo were detectable in heart failure compared with control subjects. Left ventricular assist device implantation improved whole-body insulin resistance (homeostatic model of analysis–insulin resistance, 4.5±0.6–3.2±0.5; P<0.05) and decreased myocardial levels of diacylglycerol and ceramide, whereas triglyceride and fatty acid content remained unchanged. Improved activation of the insulin/phosphatidylinositol-3 kinase/Akt signaling cascade after left ventricular assist device implantation was confirmed by increased phosphorylation of Akt and Foxo, which was accompanied by decreased membrane localization of protein kinase C isoforms after left ventricular assist device implantation. Conclusions— Mechanical unloading after left ventricular assist device implantation corrects systemic and local metabolic derangements in advanced heart failure, leading to reduced myocardial levels of toxic lipid intermediates and improved cardiac insulin signaling.
Circulation-heart Failure | 2011
Tomoko S. Kato; Aalap Chokshi; Parvati Singh; Tuba Khawaja; Faisal H. Cheema; Hirokazu Akashi; Khurram Shahzad; Shinichi Iwata; Shunichi Homma; Hiroo Takayama; Yoshifumi Naka; Ulrich P. Jorde; Maryjane Farr; Donna Mancini; P. Christian Schulze
Background— Continuous-flow left ventricular assist devices (LVAD) are increasingly used for patients with end-stage heart failure (HF). We analyzed the effects of ventricular decompression by continuous-flow versus pulsatile-flow LVADs on myocardial structure and function in this population. Methods and Results— Sixty-one patients who underwent LVAD implantation as bridge-to-transplant were analyzed (pulsatile-flow LVAD: group P, n=31; continuous-flow LVAD: group C, n=30). Serial echocardiograms, serum levels of brain natriuretic peptide (BNP), and extracellular matrix biomarkers (ECM) were compared between the groups. Myocardial BNP and ECM gene expression were evaluated in a subset of 18 patients. Postoperative LV ejection fraction was greater (33.2±12.6% versus 17.6±8.8%, P<0.0001) and the mitral E/E′ was lower (9.9±2.6 versus 13.2±3.8, P=0.0002) in group P versus group C. Postoperative serum levels of BNP, metalloproteinases (MMP)-9, and tissue inhibitor of MMP (TIMP)-4 were significantly lower in group P compared with group C (BNP: 552.6±340.6 versus 965.4±805.7 pg/mL, P<0.01; MMP9: 309.0±220.2 versus 475.2±336.9 ng/dL, P<0.05; TIMP4: 1490.9±622.4 versus 2014.3±452.4 ng/dL, P<0.001). Myocardial gene expression of ECM markers and BNP decreased in both groups; however, expression of TIMP-4 decreased only in group P (P=0.024). Conclusions— Mechanical unloading of the failing myocardium using pulsatile devices is more effective as indicated by echocardiographic parameters of systolic and diastolic LV function as well as dynamics of BNP and ECM markers. Therefore, specific effects of pulsatile mechanical unloading on the failing myocardium may have important implications for device selection especially for the purpose of bridge-to-recovery in patients with advanced HF.
Circulation-heart Failure | 2012
Raffay Khan; Tomoko S. Kato; Aalap Chokshi; Michael Chew; Shuiqing Yu; Christina Wu; Parvati Singh; Faisal H. Cheema; Hiroo Takayama; Collette Harris; Gissette Reyes-Soffer; Ralph Knöll; Hendrik Milting; Yoshifumi Naka; Donna Mancini; P. Christian Schulze
Background— Heart failure (HF) is characterized by inflammation, insulin resistance, and progressive catabolism. We hypothesized that patients with advanced HF also develop adipose tissue inflammation associated with impaired adipokine signaling and that hemodynamic correction through implantation of ventricular assist devices (VADs) would reverse adipocyte activation and correct adipokine signaling in advanced HF. Methods and Results— Circulating insulin, adiponectin, leptin, and resistin levels were measured in 36 patients with advanced HF before and after VAD implantation and 10 healthy control subjects. Serum adiponectin was higher in HF patients before VAD implantation compared with control subjects (13.3±4.9 versus 6.4±2.1 &mgr;g/mL, P=0.02). VAD implantation (mean, 129±99 days) reduced serum adiponectin (7.4±3.4 &mgr;g/mL, P<0.05) and improved insulin resistance (Homeostasis Assessment Model of insulin resistance: 6.3±5.8–3.6±2.9; P<0.05). Adiponectin expression in adipose tissue decreased after VAD implantation (−65%; P<0.03). Adiponectin receptor expression was suppressed in the failing myocardium compared with control subjects and increased after mechanical unloading. Histomorphometric analysis of adipose tissue specimens revealed reduced adipocyte size in patients with advanced HF compared with control subjects (1999±24 &mgr;m2 versus 5583±142 &mgr;m2 in control subjects; P<0.05), which increased after VAD placement. Of note, macrophage infiltration in adipose tissue was higher in advanced HF patients compared with control subjects (+25%; P<0.01), which normalized after VAD implantation. Conclusions— Adipose tissue inflammation and adiponectin resistance develop in advanced HF. Mechanical unloading of the failing myocardium reverses adipose tissue macrophage infiltration, inflammation, and adiponectin resistance in patients with advanced HF.
American Journal of Physiology-endocrinology and Metabolism | 2013
Raffay Khan; Yan Lin; Yunying Hu; Ni Huiping Son; Kalyani G. Bharadwaj; Carla Palacios; Aalap Chokshi; Ruiping Ji; Shuiqing Yu; Sunichi Homma; P. Christian Schulze; Rong Tian; Ira J. Goldberg
Hearts utilize fatty acids as a primary source of energy. The sources of those lipids include free fatty acids and lipoprotein triglycerides. Deletion of the primary triglyceride-hydrolyzing enzyme lipoprotein lipase (LPL) leads to cardiac dysfunction. Whether heart LPL-knockout (hLPL0) mice are compromised due a deficiency in energetic substrates is unknown. To test whether alternative sources of energy will prevent cardiac dysfunction in hLPL0 mice, two different models were used to supply nonlipid energy. 1) hLPL0 mice were crossed with mice transgenically expressing GLUT1 in cardiomyocytes to increase glucose uptake into the heart; this cross-corrected cardiac dysfunction, reduced cardiac hypertrophy, and increased myocardial ATP. 2) Mice were randomly assigned to a sedentary or training group (swimming) at 3 mo of age, which leads to increased skeletal muscle production of lactate. hLPL0 mice had greater expression of the lactate transporter monocarboxylate transporter-1 (MCT-1) and increased cardiac lactate uptake. Compared with hearts from sedentary hLPL0 mice, hearts from trained hLPL0 mice had adaptive hypertrophy and improved cardiac function. We conclude that defective energy intake and not the reduced uptake of fat-soluble vitamins or cholesterol is responsible for cardiac dysfunction in hLPL0 mice. In addition, our studies suggest that adaptations in cardiac metabolism contribute to the beneficial effects of exercise on the myocardium of patients with heart failure.
Current Clinical Pharmacology | 2011
Khurram Shahzad; Aalap Chokshi; P. Christian Schulze
With its increasing prevalence throughout the world, heart failure continues to be associated with high morbidity and mortality. Patients with heart failure develop progressive metabolic abnormalities, inflammation, and atrophy in the myocardium and skeletal muscle. Improvement in functional capacity as defined by exercise tolerance is essential for better quality of life and potentially survival of these patients. Therapeutic management options aimed at improving peripheral organ function are limited. Nutritional approaches with dietary supplementation in addition to current therapies are particularly appealing as they are novel and mechanistically different. In this article, we review the role of glutamine and omega-3 polyunsaturated fatty acids on metabolism and functional capacity in heart failure. These two compounds are of particular interest due to their synergistic role on oxidative metabolism, lipolysis and inflammation.
Journal of Cardiovascular Pharmacology | 2013
Raffay Khan; Aalap Chokshi; Konstantinos Drosatos; Hongfeng Jiang; Shuiqing Yu; Collette Harris; P. Christian Schulze; Shunichi Homma; William S. Blaner; Gerald I. Shulman; Li-Shin Huang; Ira J. Goldberg
Abstract: Fish oil (FO) supplementation may improve cardiac function in some patients with heart failure, especially those with diabetes. To determine why this occurs, we studied the effects of FO in mice with heart failure either due to transgenic expression of the lipid uptake protein acyl CoA synthetase 1 (ACS1) or overexpression of the transcription factor peroxisomal proliferator–activated receptor (PPAR) &ggr; via the cardiac-specific myosin heavy chain (MHC) promoter. ACS1 mice and control littermates were fed 3 diets containing low-dose or high-dose FO or nonpurified diet (NPD) for 6 weeks. MHC-PPAR&ggr; mice were fed low-dose FO or NPD. Compared with control mice fed with NPD, ACS1, and MHC-PPAR&ggr;, mice fed with NPD had reduced cardiac function and survival with cardiac fibrosis. In contrast, ACS1 mice fed with high-dose FO had better cardiac function, survival, and less myocardial fibrosis. FO increased eicosapentaenoic and docosahexaenoic acids and reduced saturated fatty acids in cardiac diacylglycerols. This was associated with reduced protein kinase C alpha and beta activation. In contrast, low-dose FO reduced MHC-PPAR&ggr; mice survival with no change in protein kinase C activation or cardiac function. Thus, dietary FO reverses fibrosis and improves cardiac function and survival of ACS1 mice but does not benefit all forms of lipid-mediated cardiomyopathy.
Circulation-heart Failure | 2011
Tomoko S. Kato; Aalap Chokshi; Parvati Singh; Tuba Khawaja; Faisal H. Cheema; Hirokazu Akashi; Khurram Shahzad; Shinichi Iwata; Shunichi Homma; Hiroo Takayama; Yoshifumi Naka; Ulrich P. Jorde; Maryjane Farr; Donna Mancini; P. Christian Schulze
Background— Continuous-flow left ventricular assist devices (LVAD) are increasingly used for patients with end-stage heart failure (HF). We analyzed the effects of ventricular decompression by continuous-flow versus pulsatile-flow LVADs on myocardial structure and function in this population. Methods and Results— Sixty-one patients who underwent LVAD implantation as bridge-to-transplant were analyzed (pulsatile-flow LVAD: group P, n=31; continuous-flow LVAD: group C, n=30). Serial echocardiograms, serum levels of brain natriuretic peptide (BNP), and extracellular matrix biomarkers (ECM) were compared between the groups. Myocardial BNP and ECM gene expression were evaluated in a subset of 18 patients. Postoperative LV ejection fraction was greater (33.2±12.6% versus 17.6±8.8%, P<0.0001) and the mitral E/E′ was lower (9.9±2.6 versus 13.2±3.8, P=0.0002) in group P versus group C. Postoperative serum levels of BNP, metalloproteinases (MMP)-9, and tissue inhibitor of MMP (TIMP)-4 were significantly lower in group P compared with group C (BNP: 552.6±340.6 versus 965.4±805.7 pg/mL, P<0.01; MMP9: 309.0±220.2 versus 475.2±336.9 ng/dL, P<0.05; TIMP4: 1490.9±622.4 versus 2014.3±452.4 ng/dL, P<0.001). Myocardial gene expression of ECM markers and BNP decreased in both groups; however, expression of TIMP-4 decreased only in group P (P=0.024). Conclusions— Mechanical unloading of the failing myocardium using pulsatile devices is more effective as indicated by echocardiographic parameters of systolic and diastolic LV function as well as dynamics of BNP and ECM markers. Therefore, specific effects of pulsatile mechanical unloading on the failing myocardium may have important implications for device selection especially for the purpose of bridge-to-recovery in patients with advanced HF.
Pacing and Clinical Electrophysiology | 2018
Ethan J. Rowin; Barry J. Maron; Aalap Chokshi; Martin S. Maron
In hypertrophic cardiomyopathy (HCM) aging has proved protective against sudden death (SD) risk and aggressive recommendations for prophylactic ICDs are uncommon in patients ≥60 years. Nevertheless, we present a patient with an unexpected but aborted sudden death event at the advanced age of 71 years due to a left ventricular apical aneurysm (LVAA) which has emerged as a novel SD marker. Subsequent reappraisal of the Tufts HCM database, specifically the 118 LVAA patients, showed that 36% of SD events occurred at ≥60 years. Of HCM patients ≥ 60 years, SD was 8‐fold more common with aneurysm than without aneurysms (16% vs 2%; P < 0.001). Risk in HCM with LVAA persists throughout life and senior LVAA patients should also be considered for primary prevention of SD with the ICD.
Circulation-heart Failure | 2012
Raffay Khan; Tomoko S. Kato; Aalap Chokshi; Michael Chew; Shuiqing Yu; Christina Wu; Parvati Singh; Faisal H. Cheema; Hiroo Takayama; Collette Harris; Gissette Reyes-Soffer; Ralph Knöll; Hendrik Milting; Yoshifumi Naka; Donna Mancini; P. Christian Schulze
Background— Heart failure (HF) is characterized by inflammation, insulin resistance, and progressive catabolism. We hypothesized that patients with advanced HF also develop adipose tissue inflammation associated with impaired adipokine signaling and that hemodynamic correction through implantation of ventricular assist devices (VADs) would reverse adipocyte activation and correct adipokine signaling in advanced HF. Methods and Results— Circulating insulin, adiponectin, leptin, and resistin levels were measured in 36 patients with advanced HF before and after VAD implantation and 10 healthy control subjects. Serum adiponectin was higher in HF patients before VAD implantation compared with control subjects (13.3±4.9 versus 6.4±2.1 &mgr;g/mL, P=0.02). VAD implantation (mean, 129±99 days) reduced serum adiponectin (7.4±3.4 &mgr;g/mL, P<0.05) and improved insulin resistance (Homeostasis Assessment Model of insulin resistance: 6.3±5.8–3.6±2.9; P<0.05). Adiponectin expression in adipose tissue decreased after VAD implantation (−65%; P<0.03). Adiponectin receptor expression was suppressed in the failing myocardium compared with control subjects and increased after mechanical unloading. Histomorphometric analysis of adipose tissue specimens revealed reduced adipocyte size in patients with advanced HF compared with control subjects (1999±24 &mgr;m2 versus 5583±142 &mgr;m2 in control subjects; P<0.05), which increased after VAD placement. Of note, macrophage infiltration in adipose tissue was higher in advanced HF patients compared with control subjects (+25%; P<0.01), which normalized after VAD implantation. Conclusions— Adipose tissue inflammation and adiponectin resistance develop in advanced HF. Mechanical unloading of the failing myocardium reverses adipose tissue macrophage infiltration, inflammation, and adiponectin resistance in patients with advanced HF.
Circulation-heart Failure | 2012
Raffay Khan; Tomoko S. Kato; Aalap Chokshi; Michael Chew; Shuiqing Yu; Christina Wu; Parvati Singh; Faisal H. Cheema; Hiroo Takayama; Collette Harris; Gissette Reyes-Soffer; Ralph Knöll; Hendrik Milting; Yoshifumi Naka; Donna Mancini; P. Christian Schulze
Background— Heart failure (HF) is characterized by inflammation, insulin resistance, and progressive catabolism. We hypothesized that patients with advanced HF also develop adipose tissue inflammation associated with impaired adipokine signaling and that hemodynamic correction through implantation of ventricular assist devices (VADs) would reverse adipocyte activation and correct adipokine signaling in advanced HF. Methods and Results— Circulating insulin, adiponectin, leptin, and resistin levels were measured in 36 patients with advanced HF before and after VAD implantation and 10 healthy control subjects. Serum adiponectin was higher in HF patients before VAD implantation compared with control subjects (13.3±4.9 versus 6.4±2.1 &mgr;g/mL, P=0.02). VAD implantation (mean, 129±99 days) reduced serum adiponectin (7.4±3.4 &mgr;g/mL, P<0.05) and improved insulin resistance (Homeostasis Assessment Model of insulin resistance: 6.3±5.8–3.6±2.9; P<0.05). Adiponectin expression in adipose tissue decreased after VAD implantation (−65%; P<0.03). Adiponectin receptor expression was suppressed in the failing myocardium compared with control subjects and increased after mechanical unloading. Histomorphometric analysis of adipose tissue specimens revealed reduced adipocyte size in patients with advanced HF compared with control subjects (1999±24 &mgr;m2 versus 5583±142 &mgr;m2 in control subjects; P<0.05), which increased after VAD placement. Of note, macrophage infiltration in adipose tissue was higher in advanced HF patients compared with control subjects (+25%; P<0.01), which normalized after VAD implantation. Conclusions— Adipose tissue inflammation and adiponectin resistance develop in advanced HF. Mechanical unloading of the failing myocardium reverses adipose tissue macrophage infiltration, inflammation, and adiponectin resistance in patients with advanced HF.