Aanjhan Ranganathan
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aanjhan Ranganathan.
ieee symposium on security and privacy | 2013
Nils Ole Tippenhauer; Luka Malisa; Aanjhan Ranganathan; Srdjan Capkun
Wireless communication provides unique security challenges, but also enables novel ways to defend against attacks. In the past few years, a number of works discussed the use of friendly jamming to protect the confidentiality of the communicated data as well as to enable message authentication and access control. In this work, we analytically and experimentally evaluate the confidentiality that can be achieved by the use of friendly jamming, given an attacker with multiple receiving antennas. We construct a MIMO-based attack that allows the attacker to recover data protected by friendly jamming and refine the conditions for which this attack is most effective. Our attack shows that friendly jamming cannot provide strong confidentiality guarantees in all settings. We further test our attack in a setting where friendly jamming is used to protect the communication to medical implants.
wireless network security | 2014
Der-Yeuan Yu; Aanjhan Ranganathan; Thomas Locher; Srdjan Capkun; David A. Basin
Power companies are deploying a multitude of sensors to monitor the energy grid. Measurements at different locations should be aligned in time to obtain the global state of the grid, and the industry therefore uses GPS as a common clock source. However, these sensors are exposed to GPS time spoofing attacks that cause misaligned aggregated measurements, leading to inaccurate monitoring that affects power stability and line fault contingencies. In this paper, we analyze the resilience of phasor measurement sensors, which record voltages and currents, to GPS spoofing performed by an adversary external to the system. We propose a solution that leverages the characteristics of multiple sensors in the power grid to limit the feasibility of such attacks. In order to increase the robustness of wide-area power grid monitoring, we evaluate mechanisms that allow collaboration among GPS receivers to detect spoofing attacks. We apply multilateration techniques to allow a set of GPS receivers to locate a false GPS signal source. Using simulations, we show that receivers sharing a local clock can locate nearby spoofing adversaries with sufficient confidence.
wireless network security | 2012
Aanjhan Ranganathan; Boris Danev; Aurélien Francillon; Srdjan Capkun
Chirp signals have been extensively used in radar and sonar systems to determine distance, velocity and angular position of objects and in wireless communications as a spread spectrum technique to provide robustness and high processing gain. Recently, several standards have adopted chirp spread spectrum (CSS) as an underlying physical-layer scheme for precise, low-power and low-complexity real-time localization. While CSS-based ranging and localization solutions have been implemented and deployed, their security has so far not been analyzed. In this work, we analyze CSS-based ranging and localization systems. We focus on distance decreasing relay attacks that have proven detrimental for the security of proximity-based access control systems (e.g., passive vehicle keyless entry and start systems). We describe a set of distance decreasing attacks realizations and verify their feasibility by simulations and experiments on a commercial ranging system. Our results demonstrate that an attacker is able to effectively reduce the distance measured by chirp-based ranging systems from 150 m to 600 m depending on chirp configuration. Finally, we discuss possible countermeasures against these attacks.
acm/ieee international conference on mobile computing and networking | 2016
Aanjhan Ranganathan; Hildur Ólafsdóttir; Srdjan Capkun
Global Positioning System (GPS) is used ubiquitously in a wide variety of applications ranging from navigation and tracking to modern smart grids and communication networks. However, it has been demonstrated that modern GPS receivers are vulnerable to signal spoofing attacks. For example, today it is possible to change the course of a ship or force a drone to land in a hostile area by simply spoofing GPS signals. Several countermeasures have been proposed in the past to detect GPS spoofing attacks. These counter-measures offer protection only against naive attackers. They are incapable of detecting strong attackers such as those capable of seamlessly taking over a GPS receiver, which is currently receiving legitimate satellite signals, and spoofing them to an arbitrary location. Also, there is no hardware platform that can be used to compare and evaluate the effectiveness of existing countermeasures in real-world scenarios. In this work, we present SPREE, which is, to the best of our knowledge, the first GPS receiver capable of detecting all spoofing attacks described in the literature. Our novel spoofing detection technique called auxiliary peak tracking enables detection of even a strong attacker capable of executing the seamless takeover attack. We implement and evaluate our receiver against three different sets of GPS signal traces: (i) a public repository of spoofing traces, (ii) signals collected through our own wardriving effort and (iii) using commercial GPS signal generators. Our evaluations show that SPREE constraints even a strong attacker (capable of seamless takeover attack) from spoofing the receiver to a location not more than 1 km away from its true location. This is a significant improvement over modern GPS receivers that can be spoofed to any arbitrary location. Finally, we release our implementation and datasets to the community for further research and development.
annual computer security applications conference | 2015
Aanjhan Ranganathan; Boris Danev; Srdjan Capkun
Today, contactless smart cards are used to provide physical access control and authentication in a wide variety of applications. Prior research have demonstrated the vulnerability of contactless smart cards to relay attacks. For example, an attacker can relay the communication between the card reader and the smart card to steal a car or pay for goods in a supermarket. To solve this problem, smart cards need to be enhanced with secure proximity verification, i.e., distance bounding, which enables the card reader and the card to verify their mutual distance. However, existing technologies do not support the deployment of distance bounding in such systems: NFC cannot provide sufficient distance resolution, and hardware complexity of the proposed (e.g., UWB-based) distance bounding radios prevents their use in contactless smart cards. In this work, we propose a novel distance bounding system specifically designed for short-range contactless access control and authentication applications. Our system combines frequency modulated continuous wave (FMCW) and backscatter communication. The use of backscatter communication enables low-complexity, power-efficient design of the prover which is critical for contactless smart cards. In addition, our distance bounding system enables the implementation of a majority of distance bounding protocols developed in prior art. We analyze our system against various attack scenarios and show that it offers strong security guarantees. Additionally, we evaluate our systems communication and distance measurement characteristics using a prototype implementation.
international conference on embedded computer systems architectures modeling and simulation | 2012
Aanjhan Ranganathan; Ali Galip Bayrak; Theo Kluter; Philip Brisk; Edoardo Charbon; Paolo Ienne
We introduce a counting stream register snoop filter, which improves the performance of existing snoop filters based on stream registers. Over time, this class of snoop filters loses the ability to filter memory addresses that have been loaded, and then evicted, from the caches that are filtered; they include cache wrap detection logic, which resets the filter whenever the contents of the cache have been completely replaced. The counting stream register snoop filter introduced here replaces the cache wrap detection logic with a direct-mapped update unit and augments each stream register with a counter, which acts as a validity checker; loading new data into the cache increments the counter, while replacements, snoopy invalidations, and evictions decrement it. A cache wrap is detected whenever the counter reaches zero. Our experimental evaluation shows that the counting stream register snoop filter architecture improves the accuracy compared to traditional stream register snoop filters for representative embedded workloads.
annual computer security applications conference | 2012
Ramya Jayaram Masti; Claudio Marforio; Aanjhan Ranganathan; Aurélien Francillon; Srdjan Capkun
The growing complexity and increased networking of security and safety-critical systems expose them to the risk of adversarial compromise through remote attacks. These attacks can result in full system compromise, but often the attacker gains control only over some system components (e.g., a peripheral) and over some applications running on the system. We consider the latter scenario and focus on enabling on-schedule execution of critical applications that are running on a partially compromised system --- we call this trusted scheduling. We identify the essential properties needed for the realization of a trusted scheduling system and we design an embedded system that achieves these properties. We show that our system protects not only against misbehaving applications but also against attacks by compromised peripherals. We evaluate the feasibility and performance of our system through a prototype implementation based on the AVR ATmega103 microcontroller.
ieee symposium on security and privacy | 2017
Aanjhan Ranganathan; Srdjan Capkun
Current proximity verification and ranging systems are prone to distance modification attacks that can lead to loss of property or even human life. The authors survey the various approaches currently used to determine proximity and analyze their resilience against distance modification attacks. Drawing on these observations, they offer suggestions for design requirements that might help systems prove proximity with high-security guarantees.
acm/ieee international conference on mobile computing and networking | 2016
Der-Yeuan Yu; Aanjhan Ranganathan; Ramya Jayaram Masti; Claudio Soriente; Srdjan Capkun
The Location Service (LCS) proposed by the telecommunication industry is an architecture that allows the location of mobile devices to be accessed in various applications. We explore the use of LCS in location-enhanced server authentication, which traditionally relies on certificates. Given recent incidents involving certificate authorities, various techniques to strengthen server authentication were proposed. They focus on improving the certificate validation process, such as pinning, revocation, or multi-path probing. In this paper, we propose using the servers geographic location as a second factor of its authenticity. Our solution, SALVE, achieves location-based server authentication by using secure DNS resolution and by leveraging LCS for location measurements. We develop a TLS extension that enables the client to verify the servers location in addition to its certificate. Successful server authentication therefore requires a valid certificate and the servers presence at a legitimate geographic location, e.g., on the premises of a data center. SALVE prevents server impersonation by remote adversaries with mis-issued certificates or stolen private keys of the legitimate server. We develop a prototype implementation and our evaluation in real-world settings shows that it incurs minimal impact to the average server throughput. Our solution is backward compatible and can be integrated with existing approaches for improving server authentication in TLS.
acm/ieee international conference on mobile computing and networking | 2016
Daniel Moser; Patrick Leu; Vincent Lenders; Aanjhan Ranganathan; Fabio Ricciato; Srdjan Capkun
Multilateration techniques have been proposed to verify the integrity of unprotected location claims in wireless localization systems. A common assumption is that the adversary is equipped with only a single device from which it transmits location spoofing signals. In this paper, we consider a more advanced model where the attacker is equipped with multiple devices and performs a geographically distributed coordinated attack on the multilateration system. The feasibility of a distributed multi-device attack is demonstrated experimentally with a self-developed attack implementation based on multiple COTS software-defined radio (SDR) devices. We launch an attack against the OpenSky Network, an air traffic surveillance system that implements a time-difference-of-arrival (TDoA) multi-lateration method for aircraft localization based on ADS-B signals. Our experiments show that the timing errors for distributed spoofed signals are indistinguishable from the multilateration errors of legitimate aircraft signals, indicating that the threat of multi-device spoofing attacks is real in this and other similar systems. In the second part of this work, we investigate physical-layer features that could be used to detect multi-device attacks. We show that the frequency offset and transient phase noise of the attackers radio devices can be exploited to discriminate between a received signal that has been transmitted by a single (legitimate) transponder or by multiple (malicious) spoofing sources. Based on that, we devise a multi-device spoofing detection system that achieves zero false positives and a false negative rate below 1%.