Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron Arvey is active.

Publication


Featured researches published by Aaron Arvey.


Cell | 2012

Extrathymic Generation of Regulatory T Cells in Placental Mammals Mitigates Maternal-Fetal Conflict

Robert M. Samstein; Steven Z. Josefowicz; Aaron Arvey; Piper M. Treuting; Alexander Y. Rudensky

Regulatory T (Treg) cells, whose differentiation and function are controlled by X chromosome-encoded transcription factor Foxp3, are generated in the thymus (tTreg) and extrathymically (peripheral, pTreg), and their deficiency results in fatal autoimmunity. Here, we demonstrate that a Foxp3 enhancer, conserved noncoding sequence 1 (CNS1), essential for pTreg but dispensable for tTreg cell generation, is present only in placental mammals. CNS1 is largely composed of mammalian-wide interspersed repeats (MIR) that have undergone retrotransposition during early mammalian radiation. During pregnancy, pTreg cells specific to a model paternal alloantigen were generated in a CNS1-dependent manner and accumulated in the placenta. Furthermore, when mated with allogeneic, but not syngeneic, males, CNS1-deficient females showed increased fetal resorption accompanied by increased immune cell infiltration and defective remodeling of spiral arteries. Our results suggest that, during evolution, a CNS1-dependent mechanism of extrathymic differentiation of Treg cells emerged in placental animals to enforce maternal-fetal tolerance.


Molecular Systems Biology | 2010

Target mRNA abundance dilutes microRNA and siRNA activity

Aaron Arvey; Erik Larsson; Chris Sander; Christina S. Leslie; Debora S. Marks

Post‐transcriptional regulation by microRNAs and siRNAs depends not only on characteristics of individual binding sites in target mRNA molecules, but also on system‐level properties such as overall molecular concentrations. We hypothesize that an intracellular pool of microRNAs/siRNAs faced with a larger number of available predicted target transcripts will downregulate each individual target gene to a lesser extent. To test this hypothesis, we analyzed mRNA expression change from 178 microRNA and siRNA transfection experiments in two cell lines. We find that downregulation of particular genes mediated by microRNAs and siRNAs indeed varies with the total concentration of available target transcripts. We conclude that to interpret and design experiments involving gene regulation by small RNAs, global properties, such as target mRNA abundance, need to be considered in addition to local determinants. We propose that analysis of microRNA/siRNA targeting would benefit from a more quantitative definition, rather than simple categorization of genes as ‘target’ or ‘not a target.’ Our results are important for understanding microRNA regulation and may also have implications for siRNA design and small RNA therapeutics.


Nature Immunology | 2012

Transcription factor Foxp3 and its protein partners form a complex regulatory network

Dipayan Rudra; Paul deRoos; Ashutosh Chaudhry; Rachel E. Niec; Aaron Arvey; Robert M. Samstein; Christina S. Leslie; Scott A. Shaffer; David R. Goodlett; Alexander Y. Rudensky

The transcription factor Foxp3 is indispensible for the differentiation and function of regulatory T cells (Treg cells). To gain insights into the molecular mechanisms of Foxp3-mediated gene expression, we purified Foxp3 complexes and explored their composition. Biochemical and mass-spectrometric analyses revealed that Foxp3 forms multiprotein complexes of 400–800 kDa or larger and identified 361 associated proteins, ∼30% of which were transcription related. Foxp3 directly regulated expression of a large proportion of the genes encoding its cofactors. Some transcription factor partners of Foxp3 facilitated its expression. Functional analysis of the cooperation of Foxp3 with one such partner, GATA-3, provided additional evidence for a network of transcriptional regulation afforded by Foxp3 and its associates to control distinct aspects of Treg cell biology.


Cell | 2015

A Distinct Function of Regulatory T Cells in Tissue Protection

Nicholas Arpaia; Jesse A. Green; Bruno Moltedo; Aaron Arvey; Saskia Hemmers; Shaopeng Yuan; Piper M. Treuting; Alexander Y. Rudensky

Regulatory T (Treg) cells suppress immune responses to a broad range of non-microbial and microbial antigens and indirectly limit immune inflammation-inflicted tissue damage by employing multiple mechanisms of suppression. Here, we demonstrate that selective Treg cell deficiency in amphiregulin leads to severe acute lung damage and decreased blood oxygen concentration during influenza virus infection without any measureable alterations in Treg cell suppressor function, antiviral immune responses, or viral load. This tissue repair modality is mobilized in Treg cells in response to inflammatory mediator IL-18 or alarmin IL-33, but not by TCR signaling that is required for suppressor function. These results suggest that, during infectious lung injury, Treg cells have a major direct and non-redundant role in tissue repair and maintenance-distinct from their role in suppression of immune responses and inflammation-and that these two essential Treg cell functions are invoked by separable cues.


Nature Immunology | 2014

Continuous requirement for the TCR in regulatory T cell function

Andrew G. Levine; Aaron Arvey; Wei Jin; Alexander Y. Rudensky

Foxp3+ regulatory T cells (Treg cells) maintain immunological tolerance, and their deficiency results in fatal multiorgan autoimmunity. Although heightened signaling via the T cell antigen receptor (TCR) is critical for the differentiation of Treg cells, the role of TCR signaling in Treg cell function remains largely unknown. Here we demonstrated that inducible ablation of the TCR resulted in Treg cell dysfunction that could not be attributed to impaired expression of the transcription factor Foxp3, decreased expression of Treg cell signature genes or altered ability to sense and consume interleukin 2 (IL-2). Instead, TCR signaling was required for maintaining the expression of a limited subset of genes comprising 25% of the activated Treg cell transcriptional signature. Our results reveal a critical role for the TCR in the suppressor capacity of Treg cells.


Nature Biotechnology | 2013

Evaluation of methods for modeling transcription factor sequence specificity

Matthew T. Weirauch; Raquel Norel; Matti Annala; Yue Zhao; Todd Riley; Julio Saez-Rodriguez; Thomas Cokelaer; Anastasia Vedenko; Shaheynoor Talukder; Phaedra Agius; Aaron Arvey; Philipp Bucher; Curtis G. Callan; Cheng Wei Chang; Chien-Yu Chen; Yong-Syuan Chen; Yu-Wei Chu; Jan Grau; Ivo Grosse; Vidhya Jagannathan; Jens Keilwagen; Szymon M. Kiełbasa; Justin B. Kinney; Holger Klein; Miron B. Kursa; Harri Lähdesmäki; Kirsti Laurila; Chengwei Lei; Christina S. Leslie; Chaim Linhart

Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a proteins DNA-binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For nine TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro–derived motifs performed similarly to motifs derived from the in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices trained by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10% of the TFs examined here). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences.


Genome Research | 2012

Sequence and chromatin determinants of cell-type–specific transcription factor binding

Aaron Arvey; Phaedra Agius; William Stafford Noble; Christina S. Leslie

Gene regulatory programs in distinct cell types are maintained in large part through the cell-type-specific binding of transcription factors (TFs). The determinants of TF binding include direct DNA sequence preferences, DNA sequence preferences of cofactors, and the local cell-dependent chromatin context. To explore the contribution of DNA sequence signal, histone modifications, and DNase accessibility to cell-type-specific binding, we analyzed 286 ChIP-seq experiments performed by the ENCODE Consortium. This analysis included experiments for 67 transcriptional regulators, 15 of which were profiled in both the GM12878 (lymphoblastoid) and K562 (erythroleukemic) human hematopoietic cell lines. To model TF-bound regions, we trained support vector machines (SVMs) that use flexible k-mer patterns to capture DNA sequence signals more accurately than traditional motif approaches. In addition, we trained SVM spatial chromatin signatures to model local histone modifications and DNase accessibility, obtaining significantly more accurate TF occupancy predictions than simpler approaches. Consistent with previous studies, we find that DNase accessibility can explain cell-line-specific binding for many factors. However, we also find that of the 10 factors with prominent cell-type-specific binding patterns, four display distinct cell-type-specific DNA sequence preferences according to our models. Moreover, for two factors we identify cell-specific binding sites that are accessible in both cell types but bound only in one. For these sites, cell-type-specific sequence models, rather than DNase accessibility, are better able to explain differential binding. Our results suggest that using a single motif for each TF and filtering for chromatin accessible loci is not always sufficient to accurately account for cell-type-specific binding profiles.


Cell | 2014

Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus.

Yongqiang Feng; Aaron Arvey; Takatoshi Chinen; Joris van der Veeken; Georg Gasteiger; Alexander Y. Rudensky

In multicellular organisms, specialized functions are delegated to distinct cell types whose identity and functional integrity are maintained upon challenge. However, little is known about the mechanisms enabling lineage inheritance and their biological implications. Regulatory T (Treg) cells, which express the transcription factor Foxp3, suppress fatal autoimmunity throughout the lifespan of animals. Here, we show that a dedicated Foxp3 intronic element CNS2 maintains Treg cell lineage identity by acting as a sensor of the essential Treg cell growth factor IL-2 and its downstream target STAT5. CNS2 sustains Foxp3 expression during division of mature Treg cells when IL-2 is limiting and counteracts proinflammatory cytokine signaling that leads to the loss of Foxp3. CNS2-mediated stable inheritance of Foxp3 expression is critical for adequate suppression of diverse types of chronic inflammation by Treg cells and prevents their differentiation into inflammatory effector cells. The described mechanism may represent a general principle of the inheritance of differentiated cell states.


Cell Host & Microbe | 2012

An Atlas of the Epstein-Barr Virus Transcriptome and Epigenome Reveals Host-Virus Regulatory Interactions

Aaron Arvey; Italo Tempera; Kevin Tsai; Horng-Shen Chen; Nadezhda Tikhmyanova; Michael Klichinsky; Christina S. Leslie; Paul M. Lieberman

Epstein-Barr virus (EBV), which is associated with multiple human tumors, persists as a minichromosome in the nucleus of B lymphocytes and induces malignancies through incompletely understood mechanisms. Here, we present a large-scale functional genomic analysis of EBV. Our experimentally generated nucleosome positioning maps and viral protein binding data were integrated with over 700 publicly available high-throughput sequencing data sets for human lymphoblastoid cell lines mapped to the EBV genome. We found that viral lytic genes are coexpressed with cellular cancer-associated pathways, suggesting that the lytic cycle may play an unexpected role in virus-mediated oncogenesis. Host regulators of viral oncogene expression and chromosome structure were identified and validated, revealing a role for the B cell-specific protein Pax5 in viral gene regulation and the cohesin complex in regulating higher order chromatin structure. Our findings provide a deeper understanding of latent viral persistence in oncogenesis and establish a valuable viral genomics resource for future exploration.


Nature Immunology | 2014

Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells

Aaron Arvey; Joris van der Veeken; Robert M. Samstein; Yongqiang Feng; John A. Stamatoyannopoulos; Alexander Y. Rudensky

The transcription factor Foxp3 is indispensable for the ability of regulatory T (Treg) cells to suppress fatal inflammation. Here, we characterized the role of Foxp3 in chromatin remodeling and regulation of gene expression in actively suppressing Treg cells in an inflammatory setting. Although genome-wide Foxp3 occupancy of DNA regulatory elements was similar in resting and in vivo activated Treg cells, Foxp3-bound enhancers were poised for repression only in activated Treg cells. Following activation, Foxp3-bound sites showed reduced chromatin accessibility and selective H3K27 tri-methylation, which was associated with Ezh2 recruitment and downregulation of nearby gene expression. Thus, Foxp3 poises its targets for repression by facilitating formation of repressive chromatin in regulatory T cells upon their activation in response to inflammatory cues.The transcription factor Foxp3 is indispensable for the ability of regulatory T cells (Treg cells) to suppress fatal inflammation. Here we characterized the role of Foxp3 in chromatin remodeling and the regulation of gene expression in actively suppressive Treg cells in an inflammatory setting. Although genome-wide occupancy of regulatory elements in DNA by Foxp3 was similar in resting Treg cells and those activated in vivo, Foxp3-bound enhancer elements in the DNA were poised for repression only in activated Treg cells. Following activation, Foxp3-bound sites showed diminished accessibility of chromatin and selective deposition of histone H3 trimethylated at Lys27 (H3K27me3), which was associated with recruitment of the histone methyltransferase Ezh2 and downregulation of the expression of nearby genes. Thus, Foxp3 poises its targets for repression by facilitating the formation of repressive chromatin in Treg cells upon their activation in response to inflammatory cues.

Collaboration


Dive into the Aaron Arvey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Y. Rudensky

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Phaedra Agius

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Joris van der Veeken

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Li Zhang

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Robert M. Samstein

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Chang

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao Yao

University of Texas at Dallas

View shared research outputs
Researchain Logo
Decentralizing Knowledge