William Stafford Noble
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William Stafford Noble.
Nucleic Acids Research | 2009
Timothy L. Bailey; Mikael Bodén; Fabian A. Buske; Martin C. Frith; Charles E. Grant; Luca Clementi; Jingyuan Ren; Wilfred W. Li; William Stafford Noble
The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning algorithms—MAST, FIMO and GLAM2SCAN—allow scanning numerous DNA and protein sequence databases for motifs discovered by MEME and GLAM2. Transcription factor motifs (including those discovered using MEME) can be compared with motifs in many popular motif databases using the motif database scanning algorithm Tomtom. Transcription factor motifs can be further analyzed for putative function by association with Gene Ontology (GO) terms using the motif-GO term association tool GOMO. MEME output now contains sequence LOGOS for each discovered motif, as well as buttons to allow motifs to be conveniently submitted to the sequence and motif database scanning algorithms (MAST, FIMO and Tomtom), or to GOMO, for further analysis. GLAM2 output similarly contains buttons for further analysis using GLAM2SCAN and for rerunning GLAM2 with different parameters. All of the motif-based tools are now implemented as web services via Opal. Source code, binaries and a web server are freely available for noncommercial use at http://meme.nbcr.net.
Nature Biotechnology | 2005
Martin Tompa; Nan Li; Timothy L. Bailey; George M. Church; Bart De Moor; Eleazar Eskin; Alexander V. Favorov; Martin C. Frith; Yutao Fu; W. James Kent; Vsevolod J. Makeev; Andrei A. Mironov; William Stafford Noble; Giulio Pavesi; Mireille Régnier; Nicolas Simonis; Saurabh Sinha; Gert Thijs; Jacques van Helden; Mathias Vandenbogaert; Zhiping Weng; Christopher T. Workman; Chun Ye; Zhou Zhu
The prediction of regulatory elements is a problem where computational methods offer great hope. Over the past few years, numerous tools have become available for this task. The purpose of the current assessment is twofold: to provide some guidance to users regarding the accuracy of currently available tools in various settings, and to provide a benchmark of data sets for assessing future tools.
Bioinformatics | 2011
Charles E. Grant; Timothy L. Bailey; William Stafford Noble
Summary: A motif is a short DNA or protein sequence that contributes to the biological function of the sequence in which it resides. Over the past several decades, many computational methods have been described for identifying, characterizing and searching with sequence motifs. Critical to nearly any motif-based sequence analysis pipeline is the ability to scan a sequence database for occurrences of a given motif described by a position-specific frequency matrix. Results: We describe Find Individual Motif Occurrences (FIMO), a software tool for scanning DNA or protein sequences with motifs described as position-specific scoring matrices. The program computes a log-likelihood ratio score for each position in a given sequence database, uses established dynamic programming methods to convert this score to a P-value and then applies false discovery rate analysis to estimate a q-value for each position in the given sequence. FIMO provides output in a variety of formats, including HTML, XML and several Santa Cruz Genome Browser formats. The program is efficient, allowing for the scanning of DNA sequences at a rate of 3.5 Mb/s on a single CPU. Availability and Implementation: FIMO is part of the MEME Suite software toolkit. A web server and source code are available at http://meme.sdsc.edu. Contact: [email protected]; [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
pacific symposium on biocomputing | 2001
Christina S. Leslie; Eleazar Eskin; William Stafford Noble
We introduce a new sequence-similarity kernel, the spectrum kernel, for use with support vector machines (SVMs) in a discriminative approach to the protein classification problem. Our kernel is conceptually simple and efficient to compute and, in experiments on the SCOP database, performs well in comparison with state-of-the-art methods for homology detection. Moreover, our method produces an SVM classifier that allows linear time classification of test sequences. Our experiments provide evidence that string-based kernels, in conjunction with SVMs, could offer a viable and computationally efficient alternative to other methods of protein classification and homology detection.
Nature Methods | 2007
Lukas Käll; Jesse D. Canterbury; Jason Weston; William Stafford Noble; Michael J. MacCoss
Shotgun proteomics uses liquid chromatography–tandem mass spectrometry to identify proteins in complex biological samples. We describe an algorithm, called Percolator, for improving the rate of confident peptide identifications from a collection of tandem mass spectra. Percolator uses semi-supervised machine learning to discriminate between correct and decoy spectrum identifications, correctly assigning peptides to 17% more spectra from a tryptic Saccharomyces cerevisiae dataset, and up to 77% more spectra from non-tryptic digests, relative to a fully supervised approach.
Genome Biology | 2007
Shobhit Gupta; John A. Stamatoyannopoulos; Timothy L. Bailey; William Stafford Noble
A common question within the context of de novo motif discovery is whether a newly discovered, putative motif resembles any previously discovered motif in an existing database. To answer this question, we define a statistical measure of motif-motif similarity, and we describe an algorithm, called Tomtom, for searching a database of motifs with a given query motif. Experimental simulations demonstrate the accuracy of Tomtoms E values and its effectiveness in finding similar motifs.
Nature Biotechnology | 2006
William Stafford Noble
Support vector machines (SVMs) are becoming popular in a wide variety of biological applications. But, what exactly are SVMs and how do they work? And what are their most promising applications in the life sciences?
Bioinformatics | 2004
Gert R. G. Lanckriet; Tijl De Bie; Nello Cristianini; Michael I. Jordan; William Stafford Noble
MOTIVATION During the past decade, the new focus on genomics has highlighted a particular challenge: to integrate the different views of the genome that are provided by various types of experimental data. RESULTS This paper describes a computational framework for integrating and drawing inferences from a collection of genome-wide measurements. Each dataset is represented via a kernel function, which defines generalized similarity relationships between pairs of entities, such as genes or proteins. The kernel representation is both flexible and efficient, and can be applied to many different types of data. Furthermore, kernel functions derived from different types of data can be combined in a straightforward fashion. Recent advances in the theory of kernel methods have provided efficient algorithms to perform such combinations in a way that minimizes a statistical loss function. These methods exploit semidefinite programming techniques to reduce the problem of finding optimizing kernel combinations to a convex optimization problem. Computational experiments performed using yeast genome-wide datasets, including amino acid sequences, hydropathy profiles, gene expression data and known protein-protein interactions, demonstrate the utility of this approach. A statistical learning algorithm trained from all of these data to recognize particular classes of proteins--membrane proteins and ribosomal proteins--performs significantly better than the same algorithm trained on any single type of data. AVAILABILITY Supplementary data at http://noble.gs.washington.edu/proj/sdp-svm
Bioinformatics | 2004
Christina S. Leslie; Eleazar Eskin; Adiel Cohen; Jason Weston; William Stafford Noble
MOTIVATION Classification of proteins sequences into functional and structural families based on sequence homology is a central problem in computational biology. Discriminative supervised machine learning approaches provide good performance, but simplicity and computational efficiency of training and prediction are also important concerns. RESULTS We introduce a class of string kernels, called mismatch kernels, for use with support vector machines (SVMs) in a discriminative approach to the problem of protein classification and remote homology detection. These kernels measure sequence similarity based on shared occurrences of fixed-length patterns in the data, allowing for mutations between patterns. Thus, the kernels provide a biologically well-motivated way to compare protein sequences without relying on family-based generative models such as hidden Markov models. We compute the kernels efficiently using a mismatch tree data structure, allowing us to calculate the contributions of all patterns occurring in the data in one pass while traversing the tree. When used with an SVM, the kernels enable fast prediction on test sequences. We report experiments on two benchmark SCOP datasets, where we show that the mismatch kernel used with an SVM classifier performs competitively with state-of-the-art methods for homology detection, particularly when very few training examples are available. Examination of the highest-weighted patterns learned by the SVM classifier recovers biologically important motifs in protein families and superfamilies.
Genome Research | 2012
Jie Wang; Jiali Zhuang; Sowmya Iyer; XinYing Lin; Troy W. Whitfield; Melissa C. Greven; Brian G. Pierce; Xianjun Dong; Anshul Kundaje; Yong Cheng; Oliver J. Rando; Ewan Birney; Richard M. Myers; William Stafford Noble; Michael Snyder; Zhiping Weng
Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) has become the dominant technique for mapping transcription factor (TF) binding regions genome-wide. We performed an integrative analysis centered around 457 ChIP-seq data sets on 119 human TFs generated by the ENCODE Consortium. We identified highly enriched sequence motifs in most data sets, revealing new motifs and validating known ones. The motif sites (TF binding sites) are highly conserved evolutionarily and show distinct footprints upon DNase I digestion. We frequently detected secondary motifs in addition to the canonical motifs of the TFs, indicating tethered binding and cobinding between multiple TFs. We observed significant position and orientation preferences between many cobinding TFs. Genes specifically expressed in a cell line are often associated with a greater occurrence of nearby TF binding in that cell line. We observed cell-line-specific secondary motifs that mediate the binding of the histone deacetylase HDAC2 and the enhancer-binding protein EP300. TF binding sites are located in GC-rich, nucleosome-depleted, and DNase I sensitive regions, flanked by well-positioned nucleosomes, and many of these features show cell type specificity. The GC-richness may be beneficial for regulating TF binding because, when unoccupied by a TF, these regions are occupied by nucleosomes in vivo. We present the results of our analysis in a TF-centric web repository Factorbook (http://factorbook.org) and will continually update this repository as more ENCODE data are generated.