Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron J. Huebner is active.

Publication


Featured researches published by Aaron J. Huebner.


Embo Molecular Medicine | 2012

Nrf2 links epidermal barrier function with antioxidant defense

Matthias Schäfer; Hany Farwanah; Ann-Helen Willrodt; Aaron J. Huebner; Konrad Sandhoff; Dennis R. Roop; Daniel Hohl; Wilhelm Bloch; Sabine Werner

The skin provides an efficient permeability barrier and protects from microbial invasion and oxidative stress. Here, we show that these essential functions are linked through the Nrf2 transcription factor. To test the hypothesis that activation of Nrf2 provides skin protection under stress conditions, we determined the consequences of pharmacological or genetic activation of Nrf2 in keratinocytes. Surprisingly, mice with enhanced Nrf2 activity in keratinocytes developed epidermal thickening, hyperkeratosis and inflammation resembling lamellar ichthyosis. This resulted from upregulation of the cornified envelope proteins small proline‐rich proteins (Sprr) 2d and 2h and of secretory leukocyte peptidase inhibitor (Slpi), which we identified as novel Nrf2 targets in keratinocytes. Since Sprrs are potent scavengers of reactive oxygen species and since Slpi has antimicrobial activities, their upregulation contributes to Nrf2s protective function. However, it also caused corneocyte fragility and impaired desquamation, followed by alterations in the epidermal lipid barrier, inflammation and overexpression of mitogens that induced keratinocyte hyperproliferation. These results identify an unexpected role of Nrf2 in epidermal barrier function, which needs to be considered for pharmacological use of Nrf2 activators.


Nature Biotechnology | 2015

Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage

Ori Bar-Nur; Cassandra Verheul; Andreia Gianotti Sommer; Justin Brumbaugh; Benjamin A. Schwarz; Inna Lipchina; Aaron J. Huebner; Gustavo Mostoslavsky

Brief expression of pluripotency-associated factors such as Oct4, Klf4, Sox2 and c-Myc (OKSM), in combination with differentiation-inducing signals, has been reported to trigger transdifferentiation of fibroblasts into other cell types. Here we show that OKSM expression in mouse fibroblasts gives rise to both induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) under conditions previously shown to induce only iNSCs. Fibroblast-derived iNSC colonies silenced retroviral transgenes and reactivated silenced X chromosomes, both hallmarks of pluripotent stem cells. Moreover, lineage tracing with an Oct4-CreER labeling system demonstrated that virtually all iNSC colonies originated from cells transiently expressing Oct4, whereas ablation of Oct4+ cells prevented iNSC formation. Lastly, an alternative transdifferentiation cocktail that lacks Oct4 and was reportedly unable to support induced pluripotency yielded iPSCs and iNSCs carrying the Oct4-CreER-derived lineage label. Together, these data suggest that iNSC generation from fibroblasts using OKSM and other pluripotency-related reprogramming factors requires passage through a transient iPSC state.


Embo Molecular Medicine | 2014

Activation of Nrf2 in keratinocytes causes chloracne (MADISH)‐like skin disease in mice

Matthias Schäfer; Ann-Helen Willrodt; Svitlana Kurinna; Andrea S. Link; Hany Farwanah; Alexandra Geusau; Florian Gruber; Olivier Sorg; Aaron J. Huebner; Dennis R. Roop; Konrad Sandhoff; Jean-Hilaire Saurat; Erwin Tschachler; Marlon R. Schneider; Lutz Langbein; Wilhelm Bloch; Hans-Dietmar Beer; Sabine Werner

The transcription factor Nrf2 is a key regulator of the cellular stress response, and pharmacological Nrf2 activation is a promising strategy for skin protection and cancer prevention. We show here that prolonged Nrf2 activation in keratinocytes causes sebaceous gland enlargement and seborrhea in mice due to upregulation of the growth factor epigen, which we identified as a novel Nrf2 target. This was accompanied by thickening and hyperkeratosis of hair follicle infundibula. These abnormalities caused dilatation of infundibula, hair loss, and cyst development upon aging. Upregulation of epigen, secretory leukocyte peptidase inhibitor (Slpi), and small proline‐rich protein 2d (Sprr2d) in hair follicles was identified as the likely cause of infundibular acanthosis, hyperkeratosis, and cyst formation. These alterations were highly reminiscent to the phenotype of chloracne/“metabolizing acquired dioxin‐induced skin hamartomas” (MADISH) patients. Indeed, SLPI, SPRR2, and epigen were strongly expressed in cysts of MADISH patients and upregulated by dioxin in human keratinocytes in an NRF2‐dependent manner. These results identify novel Nrf2 activities in the pilosebaceous unit and point to a role of NRF2 in MADISH pathogenesis.


Nature | 2017

Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells

Jiho Choi; Aaron J. Huebner; Kendell Clement; Ryan M. Walsh; Andrej J. Savol; Kaixuan Lin; Hongcang Gu; Bruno Di Stefano; Justin Brumbaugh; Sang Yong Kim; Jafar Sharif; Christopher Rose; Arman Mohammad; Junko Odajima; Jean Charron; Toshihiro Shioda; Andreas Gnirke; Steven P. Gygi; Haruhiko Koseki; Ruslan I. Sadreyev; Andrew Xiao; Alexander Meissner

Concomitant activation of the Wnt pathway and suppression of Mapk signalling by two small molecule inhibitors (2i) in the presence of leukaemia inhibitory factor (LIF) (hereafter termed 2i/L) induces a naive state in mouse embryonic stem (ES) cells that resembles the inner cell mass (ICM) of the pre-implantation embryo. Since the ICM exists only transiently in vivo, it remains unclear how sustained propagation of naive ES cells in vitro affects their stability and functionality. Here we show that prolonged culture of male mouse ES cells in 2i/L results in irreversible epigenetic and genomic changes that impair their developmental potential. Furthermore, we find that female ES cells cultured in conventional serum plus LIF medium phenocopy male ES cells cultured in 2i/L. Mechanistically, we demonstrate that the inhibition of Mek1/2 is predominantly responsible for these effects, in part through the downregulation of DNA methyltransferases and their cofactors. Finally, we show that replacement of the Mek1/2 inhibitor with a Src inhibitor preserves the epigenetic and genomic integrity as well as the developmental potential of ES cells. Taken together, our data suggest that, although short-term suppression of Mek1/2 in ES cells helps to maintain an ICM-like epigenetic state, prolonged suppression results in irreversible changes that compromise their developmental potential.


Developmental Cell | 2012

Amniotic Fluid Activates the Nrf2/Keap1 Pathway to Repair an Epidermal Barrier Defect In Utero

Aaron J. Huebner; Daisy Dai; Maria Morasso; Edward E. Schmidt; Matthias Schäfer; Sabine Werner; Dennis R. Roop

The loss of loricrin, a major component of the cornified envelope, results in a delay of epidermal barrier formation. Therefore, the living layers of the epidermis are aberrantly exposed to late-stage amniotic fluid, which may serve as the signal to upregulate genes that functionally compensate for the loss of loricrin. Consistent with this hypothesis, metabolomic studies revealed marked changes in amniotic fluid between E14.5 and E16.5 days postcoitum. In addition, we discovered that the Nrf2/Keap1 pathway detects these compositional changes and directly upregulates the expression of genes involved in the compensatory response, thus ensuring postnatal survival. In support of this finding, we demonstrate that genetically blocking the Nrf2 pathway abolishes the compensatory response and that preemptively activating Nrf2 pharmacologically rescues the delay in barrier formation in utero. Our findings reveal that the functions of Nrf2 and the composition of amniotic fluid have coevolved to ensure the formation of a functional barrier.


Cell Stem Cell | 2017

DUSP9 Modulates DNA Hypomethylation in Female Mouse Pluripotent Stem Cells

Jiho Choi; Kendell Clement; Aaron J. Huebner; Jamie Webster; Christopher M. Rose; Justin Brumbaugh; Ryan M. Walsh; Soohyun Lee; Andrej J. Savol; Jean-Pierre Etchegaray; Hongcang Gu; Patrick Boyle; Ulrich Elling; Raul Mostoslavsky; Ruslan I. Sadreyev; Peter J. Park; Steven P. Gygi; Alexander Meissner

Blastocyst-derived embryonic stem cells (ESCs) and gonad-derived embryonic germ cells (EGCs) represent two classic types of pluripotent cell lines, yet their molecular equivalence remains incompletely understood. Here, we compare genome-wide methylation patterns between isogenic ESC and EGC lines to define epigenetic similarities and differences. Surprisingly, we find that sex rather than cell type drives methylation patterns in ESCs and EGCs. Cell fusion experiments further reveal that the ratio of X chromosomes to autosomes dictates methylation levels, with female hybrids being hypomethylated and male hybrids being hypermethylated. We show that the X-linked MAPK phosphatase DUSP9 is upregulated in female compared to male ESCs, and its heterozygous loss in female ESCs leads to male-like methylation levels. However, male and female blastocysts are similarly hypomethylated, indicating that sex-specific methylation differences arise in culture. Collectively, our data demonstrate the epigenetic similarity of sex-matched ESCs and EGCs and identify DUSP9 as a regulator of female-specific hypomethylation.


Journal of Investigative Dermatology | 2013

Aurora Kinase-A Deficiency during Skin Development Impairs Cell Division and Stratification

Enrique C. Torchia; Lei Zhang; Aaron J. Huebner; Subrata Sen; Dennis R. Roop

Aurora Kinase-A (Aurora-A) promotes timely entry into mitosis, centrosome maturation, and formation of bipolar spindles. To address the role of Aurora-A in skin development and homeostasis, we interbred a floxed Aurora-A (Aurora-Afl) mouse with the Cre-deleter strain, K14.Cre. Aurora-Afl/fl;Krt14.Cre (Aurora-A−/−) mice died shortly after birth. These mice had translucent skin, and histological evaluation showed that the dorsal skin was very thin and fragile with frank erosions. Although the expression of the basal layer marker Krt14 and the differentiation marker Krt1 was evident in Aurora-A−/− epidermis, there was a marked reduction in the number of suprabasal layers and basal keratinocytes. Dye exclusion assays also showed defects in barrier function. Unlike WT cells, Aurora-A−/− basal progenitors were delayed in forming two layers at E13.5 when embryonic skin begins to stratify. Increased numbers of mitotic cells, apoptotic bodies, and polyploid keratinocytes were evident in Aurora-A−/− epidermis, indicating that a deficiency in Aurora-A promotes aberrant mitosis, mitotic slippage and cell death. Lastly, Aurora-A−/− keratinocytes displayed centrosomal abnormalities that included centrosomes located at non-apical sites in basal cells. Thus, the deletion of Aurora-A in the developing epidermis alters centrosome function of basal keratinocytes and markedly impairs their ability to divide and stratify.


Cell Death & Differentiation | 2013

Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia.

Daisy Dai; L Li; Aaron J. Huebner; Huiqing Zeng; E Guevara; D J Claypool; Aimin Liu; Jiang Chen

Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP effector gene, during hair follicle formation in mice. Tissue-specific disruption of Intu in embryonic epidermis resulted in hair follicle morphogenesis arrest because of the failure of follicular keratinocyte to differentiate. Targeting Intu in the epidermis resulted in almost complete loss of primary cilia in epidermal and follicular keratinocytes, and a suppressed hedgehog signaling pathway. Surprisingly, the epidermal stratification and differentiation programs and barrier function were not affected. These results demonstrate that tissue-specific PCP effector genes of the PCP signaling pathway control the differentiation of keratinocytes through the primary cilia in a cell fate- and context-dependent manner, which may be critical in orchestrating the propagation and interpretation of polarity signals established by the core PCP components.


Journal of Investigative Dermatology | 2016

Lce1 Family Members Are Nrf2-Target Genes that Are Induced to Compensate for the Loss of Loricrin

Yosuke Ishitsuka; Aaron J. Huebner; Robert H. Rice; Peter J. Koch; Vladislav V. Speransky; Alasdair C. Steven; Dennis R. Roop

Loricrin is a major component of the cornified cell envelope, a highly insoluble structure composed of covalently cross-linked proteins. Although loricrin knockout mice only exhibit a mild transient phenotype at birth, they show a marked delay in the formation of an epidermal barrier in utero. We recently discovered that induction of a compensatory response to repair the defective barrier is initiated by amniotic fluid via activation of NF-E2-related factor 2 and identified Sprr2d and Sprr2h as direct transcriptional targets. Proteomic analysis suggested that other proteins were also incorporated into the loricrin knockout cell envelope, in addition to the small proline rich proteins. Here we present evidence suggesting that the late cornified envelope 1 proteins are also compensatory components as determined by their localization within the loricrin knockout cell envelope via immunoelectron microscopy. We also demonstrate that late cornified envelope 1 genes are upregulated at the transcriptional level in loricrin knockout mouse skin and confirm that late cornified envelope 1 genes are transcriptional targets of NRF2. Our present study further highlights the complexity and importance of a compensatory mechanism that evolved in terrestrial animals to ensure the formation of a functional epidermal barrier.


Stem cell reports | 2018

Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors

Ori Bar-Nur; Mattia Francesco Maria Gerli; Bruno Di Stefano; Albert E. Almada; Amy Galvin; Amy Coffey; Aaron J. Huebner; Peter Feige; Cassandra Verheul; Priscilla Cheung; Duygu Payzin-Dogru; Sylvain Paisant; Anthony Anselmo; Ruslan I. Sadreyev; Harald C. Ott; Shahragim Tajbakhsh; Michael A. Rudnicki; Amy J. Wagers

Summary Skeletal muscle harbors quiescent stem cells termed satellite cells and proliferative progenitors termed myoblasts, which play pivotal roles during muscle regeneration. However, current technology does not allow permanent capture of these cell populations in vitro. Here, we show that ectopic expression of the myogenic transcription factor MyoD, combined with exposure to small molecules, reprograms mouse fibroblasts into expandable induced myogenic progenitor cells (iMPCs). iMPCs express key skeletal muscle stem and progenitor cell markers including Pax7 and Myf5 and give rise to dystrophin-expressing myofibers upon transplantation in vivo. Notably, a subset of transplanted iMPCs maintain Pax7 expression and sustain serial regenerative responses. Similar to satellite cells, iMPCs originate from Pax7+ cells and require Pax7 itself for maintenance. Finally, we show that myogenic progenitor cell lines can be established from muscle tissue following small-molecule exposure alone. This study thus reports on a robust approach to derive expandable myogenic stem/progenitor-like cells from multiple cell types.

Collaboration


Dive into the Aaron J. Huebner's collaboration.

Top Co-Authors

Avatar

Dennis R. Roop

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge