Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruslan I. Sadreyev is active.

Publication


Featured researches published by Ruslan I. Sadreyev.


Journal of Molecular Biology | 2003

COMPASS: A Tool for Comparison of Multiple Protein Alignments with Assessment of Statistical Significance

Ruslan I. Sadreyev; Nick V. Grishin

We present a novel method for the comparison of multiple protein alignments with assessment of statistical significance (COMPASS). The method derives numerical profiles from alignments, constructs optimal local profile-profile alignments and analytically estimates E-values for the detected similarities. The scoring system and E-value calculation are based on a generalization of the PSI-BLAST approach to profile-sequence comparison, which is adapted for the profile-profile case. Tested along with existing methods for profile-sequence (PSI-BLAST) and profile-profile (prof_sim) comparison, COMPASS shows increased abilities for sensitive and selective detection of remote sequence similarities, as well as improved quality of local alignments. The method allows prediction of relationships between protein families in the PFAM database beyond the range of conventional methods. Two predicted relations with high significance are similarities between various Rossmann-type folds and between various helix-turn-helix-containing families. The potential value of COMPASS for structure/function predictions is illustrated by the detection of an intricate homology between the DNA-binding domain of the CTF/NFI family and the MH1 domain of the Smad family.


Cell | 2013

Xist RNA Is a Potent Suppressor of Hematologic Cancer in Mice

Eda Yildirim; James E. Kirby; Diane E. Brown; Francois Mercier; Ruslan I. Sadreyev; David T. Scadden; Jeannie T. Lee

X chromosome aneuploidies have long been associated with human cancers, but causality has not been established. In mammals, X chromosome inactivation (XCI) is triggered by Xist RNA to equalize gene expression between the sexes. Here we delete Xist in the blood compartment of mice and demonstrate that mutant females develop a highly aggressive myeloproliferative neoplasm and myelodysplastic syndrome (mixed MPN/MDS) with 100% penetrance. Significant disease components include primary myelofibrosis, leukemia, histiocytic sarcoma, and vasculitis. Xist-deficient hematopoietic stem cells (HSCs) show aberrant maturation and age-dependent loss. Reconstitution experiments indicate that MPN/MDS and myelofibrosis are of hematopoietic rather than stromal origin. We propose that Xist loss results in X reactivation and consequent genome-wide changes that lead to cancer, thereby causally linking the X chromosome to cancer in mice. Thus, Xist RNA not only is required to maintain XCI but also suppresses cancer in vivo.


Proteins | 2009

Structure prediction for CASP8 with all-atom refinement using Rosetta

Srivatsan Raman; Robert B. Vernon; James Thompson; Michael D. Tyka; Ruslan I. Sadreyev; Jimin Pei; David E. Kim; Elizabeth H. Kellogg; Frank DiMaio; Oliver F. Lange; Lisa N. Kinch; Will Sheffler; Bong Hyun Kim; Rhiju Das; Nick V. Grishin; David Baker

We describe predictions made using the Rosetta structure prediction methodology for the Eighth Critical Assessment of Techniques for Protein Structure Prediction. Aggressive sampling and all‐atom refinement were carried out for nearly all targets. A combination of alignment methodologies was used to generate starting models from a range of templates, and the models were then subjected to Rosetta all atom refinement. For the 64 domains with readily identified templates, the best submitted model was better than the best alignment to the best template in the Protein Data Bank for 24 cases, and improved over the best starting model for 43 cases. For 13 targets where only very distant sequence relationships to proteins of known structure were detected, models were generated using the Rosetta de novo structure prediction methodology followed by all‐atom refinement; in several cases the submitted models were better than those based on the available templates. Of the 12 refinement challenges, the best submitted model improved on the starting model in seven cases. These improvements over the starting template‐based models and refinement tests demonstrate the power of Rosetta structure refinement in improving model accuracy. Proteins 2009.


Nature Medicine | 2016

Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition

Aaron N. Hata; Matthew J. Niederst; Hannah L. Archibald; Maria Gomez-Caraballo; Faria Siddiqui; Hillary Mulvey; Yosef E. Maruvka; Fei Ji; Hyo Eun C Bhang; Viveksagar Krishnamurthy Radhakrishna; Giulia Siravegna; Haichuan Hu; Sana Raoof; Elizabeth L. Lockerman; Anuj Kalsy; Dana Lee; Celina L. Keating; David A. Ruddy; Leah Damon; Adam S. Crystal; Carlotta Costa; Zofia Piotrowska; Alberto Bardelli; Anthony John Iafrate; Ruslan I. Sadreyev; Frank Stegmeier; Gad Getz; Lecia V. Sequist; Anthony C. Faber; Jeffrey A. Engelman

Although mechanisms of acquired resistance of epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancers to EGFR inhibitors have been identified, little is known about how resistant clones evolve during drug therapy. Here we observe that acquired resistance caused by the EGFRT790M gatekeeper mutation can occur either by selection of pre-existing EGFRT790M-positive clones or via genetic evolution of initially EGFRT790M-negative drug-tolerant cells. The path to resistance impacts the biology of the resistant clone, as those that evolved from drug-tolerant cells had a diminished apoptotic response to third-generation EGFR inhibitors that target EGFRT790M; treatment with navitoclax, an inhibitor of the anti-apoptotic factors BCL-xL and BCL-2 restored sensitivity. We corroborated these findings using cultures derived directly from EGFR inhibitor–resistant patient tumors. These findings provide evidence that clinically relevant drug-resistant cancer cells can both pre-exist and evolve from drug-tolerant cells, and they point to therapeutic opportunities to prevent or overcome resistance in the clinic.


Bioinformatics | 2003

PCMA: fast and accurate multiple sequence alignment based on profile consistency

Jimin Pei; Ruslan I. Sadreyev; Nick V. Grishin

UNLABELLED PCMA (profile consistency multiple sequence alignment) is a progressive multiple sequence alignment program that combines two different alignment strategies. Highly similar sequences are aligned in a fast way as in ClustalW, forming pre-aligned groups. The T-Coffee strategy is applied to align the relatively divergent groups based on profile-profile comparison and consistency. The scoring function for local alignments of pre-aligned groups is based on a novel profile-profile comparison method that is a generalization of the PSI-BLAST approach to profile-sequence comparison. PCMA balances speed and accuracy in a flexible way and is suitable for aligning large numbers of sequences. AVAILABILITY PCMA is freely available for non-commercial use. Pre-compiled versions for several platforms can be downloaded from ftp://iole.swmed.edu/pub/PCMA/.


Molecular Cell | 2014

The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites.

Jason A. West; Christopher P. Davis; Hongjae Sunwoo; Matthew D. Simon; Ruslan I. Sadreyev; Peggy I. Wang; Michael Y. Tolstorukov; Robert E. Kingston

Mechanistic roles for many lncRNAs are poorly understood, in part because their direct interactions with genomic loci and proteins are difficult to assess. Using a method to purify endogenous RNAs and their associated factors, we mapped the genomic binding sites for two highly expressed human lncRNAs, NEAT1 and MALAT1. We show that NEAT1 and MALAT1 localize to hundreds of genomic sites in human cells, primarily over active genes. NEAT1 and MALAT1 exhibit colocalization to many of these loci, but display distinct gene body binding patterns at these sites, suggesting independent but complementary functions for these RNAs. We also identified numerous proteins enriched by both lncRNAs, supporting complementary binding and function, in addition to unique associated proteins. Transcriptional inhibition or stimulation alters localization of NEAT1 on active chromatin sites, implying that underlying DNA sequence does not target NEAT1 to chromatin, and that localization responds to cues involved in the transcription process.


Proteins | 2003

CASP5 Assessment of Fold Recognition Target Predictions

Lisa N. Kinch; James O. Wrabl; S. Sri Krishna; Indraneel Majumdar; Ruslan I. Sadreyev; Yuan Qi; Jimin Pei; Hua Cheng; Nick V. Grishin

We present an overview of the fifth round of Critical Assessment of Protein Structure Prediction (CASP5) fold recognition category. Prediction models were evaluated by using six different structural measures and four different alignment measures, and these scores were compared to those assigned manually over a diverse subset of target domains. Scores were combined to compare overall performance of participating groups and to estimate rank significance. The methods used by a few groups outperformed all other methods in terms of the evaluated criteria and could be considered state‐of‐the‐art in structure prediction. We discuss a few examples of difficult fold recognition targets to highlight the progress of ab initio‐type methods on difficult structure analogs and the difficulties of predicting multidomain targets and selecting prediction models. We also compared the results of manual groups to those of automatic servers evaluated in parallel by CAFASP, showing that the top performing automated server structure predictions approached those of the best manual predictors. Proteins 2003;53:395–409.


Cell | 2017

Macrophages Facilitate Electrical Conduction in the Heart

Maarten Hulsmans; Sebastian Clauss; Ling Xiao; Aaron D. Aguirre; Kevin R. King; Alan Hanley; William J. Hucker; Eike M. Wülfers; Gunnar Seemann; Gabriel Courties; Yoshiko Iwamoto; Yuan Sun; Andrej J. Savol; Hendrik B. Sager; Kory J. Lavine; Gregory A. Fishbein; Diane E. Capen; Nicolas Da Silva; Lucile Miquerol; Hiroko Wakimoto; Christine E. Seidman; Jonathan G. Seidman; Ruslan I. Sadreyev; Kamila Naxerova; Richard N. Mitchell; Dennis Brown; Peter Libby; Ralph Weissleder; Filip K. Swirski; Peter Kohl

Organ-specific functions of tissue-resident macrophages in the steady-state heart are unknown. Here, we show that cardiac macrophages facilitate electrical conduction through the distal atrioventricular node, where conducting cells densely intersperse with elongated macrophages expressing connexin 43. When coupled to spontaneously beating cardiomyocytes via connexin-43-containing gap junctions, cardiac macrophages have a negative resting membrane potential and depolarize in synchrony with cardiomyocytes. Conversely, macrophages render the resting membrane potential of cardiomyocytes more positive and, according to computational modeling, accelerate their repolarization. Photostimulation of channelrhodopsin-2-expressing macrophages improves atrioventricular conduction, whereas conditional deletion of connexin 43 in macrophages and congenital lack of macrophages delay atrioventricular conduction. In the Cd11bDTR mouse, macrophage ablation induces progressive atrioventricular block. These observations implicate macrophages in normal and aberrant cardiac conduction.


Current Opinion in Structural Biology | 2009

Discrete-continuous duality of protein structure space

Ruslan I. Sadreyev; Bong Hyun Kim; Nick V. Grishin

Recently, the nature of protein structure space has been widely discussed in the literature. The traditional discrete view of protein universe as a set of separate folds has been criticized in the light of growing evidence that almost any arrangement of secondary structures is possible and the whole protein space can be traversed through a path of similar structures. Here we argue that the discrete and continuous descriptions are not mutually exclusive, but complementary: the space is largely discrete in evolutionary sense, but continuous geometrically when purely structural similarities are quantified. Evolutionary connections are mainly confined to separate structural prototypes corresponding to folds as islands of structural stability, with few remaining traceable links between the islands. However, for a geometric similarity measure, it is usually possible to find a reasonable cutoff that yields paths connecting any two structures through intermediates.


Nature Structural & Molecular Biology | 2012

X-chromosome hyperactivation in mammals via nonlinear relationships between chromatin states and transcription

Eda Yildirim; Ruslan I. Sadreyev; Stefan F. Pinter; Jeannie T. Lee

Dosage compensation in mammals occurs at two levels. In addition to balancing X-chromosome dosage between males and females via X inactivation, mammals also balance dosage of Xs and autosomes. It has been proposed that X-autosome equalization occurs by upregulation of Xa (active X). To investigate mechanism, we perform allele-specific ChIP-seq for chromatin epitopes and analyze RNA-seq data. The hypertranscribed Xa demonstrates enrichment of active chromatin marks relative to autosomes. We derive predictive models for relationships among Pol II occupancy, active mark densities and gene expression, and we suggest that Xa upregulation involves increased transcription initiation and elongation. Enrichment of active marks on Xa does not scale proportionally with transcription output, a disparity explained by nonlinear quantitative dependencies among active histone marks, Pol II occupancy and transcription. Notably, the trend of nonlinear upregulation also occurs on autosomes. Thus, Xa upregulation involves combined increases of active histone marks and Pol II occupancy, without invoking X-specific dependencies between chromatin states and transcription.

Collaboration


Dive into the Ruslan I. Sadreyev's collaboration.

Top Co-Authors

Avatar

Nick V. Grishin

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan F. Pinter

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge