Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron J. W. Hsueh is active.

Publication


Featured researches published by Aaron J. W. Hsueh.


Recent Progress in Hormone Research | 1988

Chemical and biological characterization of the inhibin family of protein hormones.

Wylie Vale; Catherine Rivier; Aaron J. W. Hsueh; Carolyn A. Campen; Helene Meunier; Thomas A. Bicsak; Joan Vaughan; Anne Corrigan; Wayne C. Bardin; Paul E. Sawchenko; Felice Petraglia; John Yu; Paul M. Plotsky; Joachim Spiess; Jean Rivier

Publisher Summary This chapter discusses the chemical and biological characterization of the inhibin family of protein hormones, which is a family of peptides isolated from the follicular fluid or rete testis fluid on the basis of their ability to inhibit the secretion of the follicle-stimulating hormone (FSH) by cultured rat anterior pituitary cells. It also reviews the possible roles of inhibin and fibre-reinforced plastic (FRP)/activin in placenta, brain, and bone marrow. Inhibin-related dimers are broadly distributed anatomically and have powerful activities in several biological systems where inhibin and FRP/activin often exhibit opposite effects. While the physiologic roles of inhibin to regulate FSH secretion in the female rat and immature male rat are strongly supported, the significance of these hormones within the gonad, brain, placenta, and bone marrow have yet to be placed in in vivo context. Although the panoply of functions of inhibin and FRP/activin are certainly incompletely understood at this time, this family has already demonstrated a powerful mechanism for the generation of signal diversity whereby differential subunit association can result in the generation of dimers with opposing biological actions in multiple tissues.


Journal of Biological Chemistry | 2002

INSL3/Leydig Insulin-like Peptide Activates the LGR8 Receptor Important in Testis Descent

Jin Kumagai; Sheau Yu Hsu; Hirotaka Matsumi; Jaesook Roh; Ping Fu; John D. Wade; Ross A. D. Bathgate; Aaron J. W. Hsueh

Several orphan G protein-coupled receptors homologous to gonadotropin and thyrotropin receptors have recently been identified and named as LGR4–8. INSL3, also known as Leydig insulin-like peptide or relaxin-like factor, is a relaxin family member expressed in testis Leydig cells and ovarian theca and luteal cells. Male mice mutant for INSL3 exhibit cryptorchidism or defects in testis descent due to abnormal gubernaculum development whereas overexpression of INSL3 induces ovary descent in transgenic females. Because transgenic mice missing the LGR8 gene are also cryptorchid, INSL3 was tested as the ligand for LGR8. Here, we show that treatment with INSL3 stimulated cAMP production in cells expressing recombinant LGR8 but not LGR7. In addition, interactions between INSL3 and LGR8 were demonstrated following ligand receptor cross-linking. Northern blot analysis indicated that the LGR8 transcripts are expressed in gubernaculum whereas treatment of cultured gubernacular cells with INSL3 stimulated cAMP production and thymidine incorporation. The present study identified the ligand for an orphan G protein-coupled receptor based on common phenotypes of ligand and receptor null mice. Demonstration of INSL3 as the ligand for LGR8 facilitates understanding of the mechanism of testis descent and allows studies on the role of INSL3 in gonadal and other physiological processes.


Endocrinology | 1999

RECOMBINANT GROWTH DIFFERENTIATION FACTOR-9 (GDF-9) ENHANCES GROWTH AND DIFFERENTIATION OF CULTURED EARLY OVARIAN FOLLICLES

Masaru Hayashi; Elizabeth A. McGee; Gyesik Min; Cynthia Klein; Ursula M. Rose; Marcel van Duin; Aaron J. W. Hsueh

Transgenic mice with deletion of the GDF-9 (growth differentiation factor-9) gene are characterized by the arrest of ovarian follicle development at the primary stage. Based on the hypothesis that GDF-9 is important for early follicle development, we isolated rat GDF-9 complementary DNA (cDNA) and generated recombinant GDF-9 protein to study its physiological role. Using bacteria-derived GDF-9-glutathione S-transferase (GST) fusion protein, specific antibodies to the mature form of GDF-9 was generated. Immunohistochemical staining of ovarian sections indicated the localization of GDF-9 protein in the oocyte of primary, secondary and preantral follicles, whereas immunoblotting demonstrated the secretion of GDF-9 by mammalian cells transfected with GDF-9 cDNAs. Recombinant GDF-9 was shown to be an N-glycosylated protein capable of stimulating early follicle development. Growth of preantral follicles isolated from immature rats was enhanced by treatment with either GDF-9 or FSH whereas the combined treatment...


Biology of Reproduction | 2000

Growth Differentiation Factor-9 Stimulates Proliferation but Suppresses the Follicle-Stimulating Hormone-Induced Differentiation of Cultured Granulosa Cells from Small Antral and Preovulatory Rat Follicles

Ursula A. Vitt; Masaru Hayashi; Cynthia Klein; Aaron J. W. Hsueh

Abstract In addition to pituitary gonadotropins and paracrine factors, ovarian follicle development is also modulated by oocyte factors capable of stimulating granulosa cell proliferation but suppressing their differentiation. The nature of these oocyte factors is unclear. Because growth differentiation factor-9 (GDF-9) enhanced preantral follicle growth and was detected in the oocytes of early antral and preovulatory follicles, we hypothesized that this oocyte hormone could regulate the proliferation and differentiation of granulosa cells from these advanced follicles. Treatment with recombinant GDF-9, but not FSH, stimulated thymidine incorporation into cultured granulosa cells from both early antral and preovulatory follicles, accompanied by increases in granulosa cell number. Although GDF-9 treatment alone stimulated basal steroidogenesis in granulosa cells, cotreatment with GDF-9 suppressed FSH-stimulated progesterone and estradiol production. In addition, GDF-9 cotreatment attentuated FSH-induced LH receptor formation. The inhibitory effects of GDF-9 on FSH-induced granulosa cell differentiation were accompanied by decreases in the FSH-induced cAMP production. These data suggested that GDF-9 is a proliferation factor for granulosa cells from early antral and preovulatory follicles but suppresses FSH-induced differentiation of the same cells. Thus, oocyte-derived GDF-9 could account, at least partially, for the oocyte factor(s) previously reported to control cumulus and granulosa cell differentiation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment.

Kazuhiro Kawamura; Yuan Cheng; Nao Suzuki; Masashi Deguchi; Yorino Sato; Seido Takae; Chi-hong Ho; Nanami Kawamura; Midori Tamura; Shu Hashimoto; Yodo Sugishita; Y. Morimoto; Yoshihiko Hosoi; Nobuhito Yoshioka; Bunpei Ishizuka; Aaron J. W. Hsueh

Significance Human ovaries hold follicles containing oocytes. When follicles mature, they release eggs for fertilization. Patients with primary ovarian insufficiency develop menopausal symptoms at less than 40 y of age. They have few remaining follicles and their only chance for bearing a baby is through egg donation. Kawamura et al. demonstrated that Hippo and Akt signaling pathways regulate follicle growth. Using an in vitro activation approach, they first removed ovaries from infertile patients, followed by fragmentation to disrupt Hippo signaling and drug treatment to stimulate Akt signaling. After grafting ovarian tissues back to patients, they found rapid follicle growth in some patients and successfully retrieved mature eggs. After in vitro fertilization and embryo transfer, a live birth is now reported. Primary ovarian insufficiency (POI) and polycystic ovarian syndrome are ovarian diseases causing infertility. Although there is no effective treatment for POI, therapies for polycystic ovarian syndrome include ovarian wedge resection or laser drilling to induce follicle growth. Underlying mechanisms for these disruptive procedures are unclear. Here, we explored the role of the conserved Hippo signaling pathway that serves to maintain optimal size across organs and species. We found that fragmentation of murine ovaries promoted actin polymerization and disrupted ovarian Hippo signaling, leading to increased expression of downstream growth factors, promotion of follicle growth, and the generation of mature oocytes. In addition to elucidating mechanisms underlying follicle growth elicited by ovarian damage, we further demonstrated additive follicle growth when ovarian fragmentation was combined with Akt stimulator treatments. We then extended results to treatment of infertility in POI patients via disruption of Hippo signaling by fragmenting ovaries followed by Akt stimulator treatment and autografting. We successfully promoted follicle growth, retrieved mature oocytes, and performed in vitro fertilization. Following embryo transfer, a healthy baby was delivered. The ovarian fragmentation–in vitro activation approach is not only valuable for treating infertility of POI patients but could also be useful for middle-aged infertile women, cancer patients undergoing sterilizing treatments, and other conditions of diminished ovarian reserve.


Journal of Biological Chemistry | 2000

MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain.

Jeehyeon Bae; Chandra P. Leo; Sheau Yu Hsu; Aaron J. W. Hsueh

MCL-1 (myeloid cellleukemia-1) is an antiapoptotic BCL-2 family protein discovered as an early induction gene during myeloblastic leukemia cell differentiation. This survival protein has the BCL-2 homology (BH) domains 1, 2, and 3 and a C-terminal transmembrane region. We identified a short splicing variant of the MCL-1mRNA in the human placenta encoding a protein, termed MCL-1 short (MCL-1S), with an altered C terminus as compared with the full-length MCL-1 long (MCL-1L), leading to the loss of BH1, BH2, and the transmembrane domains. Analysis of the human MCL-1 gene indicated that MCL-1S results from the splicing out of exon 2 during mRNA processing. MCL-1S, unlike MCL-1L, does not interact with diverse proapoptotic BCL-2-related proteins in the yeast two-hybrid system. In contrast, MCL-1S dimerizes with MCL-1L in the yeast assay and coprecipitates with MCL-1L in transfected mammalian cells. Overexpression of MCL-1S induces apoptosis in transfected Chinese hamster ovary cells, and the MCL-1S action was antagonized by the antiapoptotic MCL-1L. Thus, the naturally occurring MCL-1S variant represents a new proapoptotic BH3 domain-only protein capable of dimerizing with the antiapoptotic MCL-1L. The fate of MCL-1-expressing cells could be regulated through alternative splicing mechanisms and interactions of the resulting anti- and proapoptotic gene products.


Steroids | 1978

Glucocorticoid inhibition of fsh-induced estrogen production in cultured rat granulosa cells

Aaron J. W. Hsueh; Gregory F. Erickson

The effects of glucocorticoids on the steroidogenesis of ovarian granulosa cells were investigated. Cortisol and dexamethasone inhibited the increase in aromatase activity induced by FSH in cultured rat granulosa cells. In the same cultures progesterone production was stimulated to a maximum of 167% of the control level. This differential effect of glucocorticoids on estrogen and progesterone production by the granulosa cells indicates that glucocorticoids exert specific inhibition of the induction of aromatase by FSH and do not cause a general suppression of granulosa cell activity. In contrast to their inhibition of the FSH induction of aromatase enzymes, glucocorticoids did not interfere with the activity of pre-existing aromatase enzymes. In granulosa cells containing full aromatase activity, treatment with cortisol and dexamethasone did not inhibit aromatization of androstenedione to estrogens whereas two known aromatase inhibitors (dihydrotestosterone and 4-androstene-3, 6, 17-trione) were effective. These results indicate that the glucocorticoids exert a selective inhibition of the FSH-induction of aromatase activity in rat granulosa cells by a mechanism other than directly interfering with the aromatization reaction.


Biology of Reproduction | 2002

Bone Morphogenetic Protein Receptor Type II Is a Receptor for Growth Differentiation Factor-9

Ursula A. Vitt; Sabine Mazerbourg; Cynthia Klein; Aaron J. W. Hsueh

Abstract Growth differentiation factor-9 (GDF-9) is a glycoprotein secreted by the oocyte that is capable of stimulating granulosa cell proliferation and inhibiting differentiation. GDF-9 is a member of the transforming growth factor β superfamily of ligands known to signal through type I and II serine/threonine kinase receptors. In the sequenced human genome, seven type I and six type II receptors have been identified. Based on phylogenetic and sequence analyses, we predicted that GDF-9 likely interacts with known type I and type II receptors. We obtained soluble chimeric proteins with the ectodomains of candidate receptors fused to the Fc portion of immunoglobin and tested their ability to act as functional antagonists. Addition of bone morphogenetic protein receptor type II (BMPRII) ectodomain was most effective in blocking GDF-9 stimulation of granulosa cell proliferation and GDF-9 suppression of FSH-stimulated progesterone production. In addition, the ectodomains of bone morphogenetic protein receptor type IA, bone morphogenetic protein receptor type IB, and activin receptor type IIA were partially effective in blocking GDF-9 action. Furthermore, the BMPRII ectodomain directly interacted with GDF-9 in a coprecipitation study demonstrating the role of the BMPRII ectodomain as a binding protein for GDF-9. To demonstrate the role of BMPRII in GDF-9 signaling in follicular cells, the expression of this protein was blocked in cultured granulosa cells using specific BMPRII antisense oligomers. Inhibition of BMPRII biosynthesis completely prevented the GDF-9 induction of granulosa cell thymidine incorporation. GDF-9 expression is essential for early follicle development, and the presence of the type II and type I receptors in the neonatal rat ovary was verified by reverse transcription polymerase chain reaction. These results demonstrate the important role of BMPRII in mediating GDF-9 action in granulosa cells from small antral follicles and indicate that the effects of GDF-9 might be transduced by binding to BMPRII and one or more type I receptors.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Activation of dormant ovarian follicles to generate mature eggs

Jing Li; Kazuhiro Kawamura; Yuan Cheng; Shuang Liu; Cynthia Klein; Shu Liu; Enkui Duan; Aaron J. W. Hsueh

Although multiple follicles are present in mammalian ovaries, most of them remain dormant for years or decades. During reproductive life, some follicles are activated for development. Genetically modified mouse models with oocyte-specific deletion of genes in the PTEN-PI3K-Akt-Foxo3 pathway exhibited premature activation of all dormant follicles. Using an inhibitor of the Phosphatase with TENsin homology deleted in chromosome 10 (PTEN) phosphatase and a PI3K activating peptide, we found that short-term treatment of neonatal mouse ovaries increased nuclear exclusion of Foxo3 in primordial oocytes. After transplantation under kidney capsules of ovariectomized hosts, treated follicles developed to the preovulatory stage with mature eggs displaying normal epigenetic changes of imprinted genes. After in vitro fertilization and embryo transfer, healthy progeny with proven fertility were delivered. Human ovarian cortical fragments from cancer patients were also treated with the PTEN inhibitor. After xeno-transplantation to immune-deficient mice for 6 months, primordial follicles developed to the preovulatory stage with oocytes capable of undergoing nuclear maturation. Major differences between male and female mammals are unlimited number of sperm and paucity of mature oocytes. Thus, short-term in vitro activation of dormant ovarian follicles after stimulation of the PI3K-Akt pathway allows the generation of a large supply of mature female germ cells for future treatment of infertile women with a diminishing ovarian reserve and for cancer patients with cryo-preserved ovaries. Generation of a large number of human oocytes also facilitates future derivation of embryonic stem cells for regenerative medicine.


Molecular and Cellular Biology | 2004

Neonatal lethality of LGR5 null mice is associated with ankyloglossia and gastrointestinal distension.

Hiroki Morita; Sabine Mazerbourg; Donna M. Bouley; Ching-Wei Luo; Kazuhiro Kawamura; Yoshimitsu Kuwabara; Helene Baribault; Hui Tian; Aaron J. W. Hsueh

ABSTRACT The physiological role of an orphan G protein-coupled receptor, LGR5, was investigated by targeted deletion of this seven-transmembrane protein containing a large N-terminal extracellular domain with leucine-rich repeats. LGR5 null mice exhibited 100% neonatal lethality characterized by gastrointestinal tract dilation with air and an absence of milk in the stomach. Gross and histological examination revealed fusion of the tongue to the floor of oral cavity in the mutant newborns and immunostaining of LGR5 expression in the epithelium of the tongue and in the mandible of the wild-type embryos. The observed ankyloglossia phenotype provides a model for understanding the genetic basis of this craniofacial defect in humans and an opportunity to elucidate the physiological role of the LGR5 signaling system during embryonic development.

Collaboration


Dive into the Aaron J. W. Hsueh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuhiro Kawamura

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irving Boime

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang-Young Chun

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Chi Jia

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge