Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheau Yu Hsu is active.

Publication


Featured researches published by Sheau Yu Hsu.


Journal of Biological Chemistry | 2002

INSL3/Leydig Insulin-like Peptide Activates the LGR8 Receptor Important in Testis Descent

Jin Kumagai; Sheau Yu Hsu; Hirotaka Matsumi; Jaesook Roh; Ping Fu; John D. Wade; Ross A. D. Bathgate; Aaron J. W. Hsueh

Several orphan G protein-coupled receptors homologous to gonadotropin and thyrotropin receptors have recently been identified and named as LGR4–8. INSL3, also known as Leydig insulin-like peptide or relaxin-like factor, is a relaxin family member expressed in testis Leydig cells and ovarian theca and luteal cells. Male mice mutant for INSL3 exhibit cryptorchidism or defects in testis descent due to abnormal gubernaculum development whereas overexpression of INSL3 induces ovary descent in transgenic females. Because transgenic mice missing the LGR8 gene are also cryptorchid, INSL3 was tested as the ligand for LGR8. Here, we show that treatment with INSL3 stimulated cAMP production in cells expressing recombinant LGR8 but not LGR7. In addition, interactions between INSL3 and LGR8 were demonstrated following ligand receptor cross-linking. Northern blot analysis indicated that the LGR8 transcripts are expressed in gubernaculum whereas treatment of cultured gubernacular cells with INSL3 stimulated cAMP production and thymidine incorporation. The present study identified the ligand for an orphan G protein-coupled receptor based on common phenotypes of ligand and receptor null mice. Demonstration of INSL3 as the ligand for LGR8 facilitates understanding of the mechanism of testis descent and allows studies on the role of INSL3 in gonadal and other physiological processes.


Journal of Biological Chemistry | 2000

MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain.

Jeehyeon Bae; Chandra P. Leo; Sheau Yu Hsu; Aaron J. W. Hsueh

MCL-1 (myeloid cellleukemia-1) is an antiapoptotic BCL-2 family protein discovered as an early induction gene during myeloblastic leukemia cell differentiation. This survival protein has the BCL-2 homology (BH) domains 1, 2, and 3 and a C-terminal transmembrane region. We identified a short splicing variant of the MCL-1mRNA in the human placenta encoding a protein, termed MCL-1 short (MCL-1S), with an altered C terminus as compared with the full-length MCL-1 long (MCL-1L), leading to the loss of BH1, BH2, and the transmembrane domains. Analysis of the human MCL-1 gene indicated that MCL-1S results from the splicing out of exon 2 during mRNA processing. MCL-1S, unlike MCL-1L, does not interact with diverse proapoptotic BCL-2-related proteins in the yeast two-hybrid system. In contrast, MCL-1S dimerizes with MCL-1L in the yeast assay and coprecipitates with MCL-1L in transfected mammalian cells. Overexpression of MCL-1S induces apoptosis in transfected Chinese hamster ovary cells, and the MCL-1S action was antagonized by the antiapoptotic MCL-1L. Thus, the naturally occurring MCL-1S variant represents a new proapoptotic BH3 domain-only protein capable of dimerizing with the antiapoptotic MCL-1L. The fate of MCL-1-expressing cells could be regulated through alternative splicing mechanisms and interactions of the resulting anti- and proapoptotic gene products.


Journal of Clinical Investigation | 2002

Thyrostimulin, a heterodimer of two new human glycoprotein hormone subunits, activates the thyroid-stimulating hormone receptor

Koji Nakabayashi; Hirotaka Matsumi; Alka Bhalla; Jeehyeon Bae; Sietse Mosselman; Sheau Yu Hsu; Aaron J. W. Hsueh

Human thyrotropin (TSH), luteotropin (LH), follitropin (FSH), and chorionic gonadotropin are members of the heterodimeric glycoprotein hormone family. The common alpha subunit forms noncovalent heterodimers with different beta subunits. Two novel human glycoprotein hormonelike genes, alpha2 (A2) and beta5 (B5), recently have been identified. Using a yeast two-hybrid assay, the two subunits were found as potential heterodimerization partners. Immunological analyses confirmed the heterodimerization of A2 and B5 in transfected cells and their colocalization in the anterior pituitary. Recombinant A2/B5 heterodimeric glycoproteins, purified using cation exchange and size fractionation chromatography, activated human TSH receptors, but not LH and FSH receptors, and showed high affinity to TSH receptors in a radioligand receptor assay. The heterodimer also stimulated cAMP production and thymidine incorporation by cultured thyroid cells and increased serum thyroxine levels in TSH-suppressed rats in vivo. This new heterodimeric glycoprotein hormone was named as thyrostimulin based on its thyroid-stimulating activity. The expression of thyrostimulin in the anterior pituitary known to express TSH receptors suggested a paracrine mechanism. The present discovery of a new ligand based on genomic approaches could facilitate the understanding of the physiological roles of extra-thyroid TSH receptor systems and the structural-functional basis of receptor signaling by related glycoprotein hormones.


Science Signaling | 2003

Signaling Receptome: A Genomic and Evolutionary Perspective of Plasma Membrane Receptors Involved in Signal Transduction

Izhar Ben-Shlomo; Sheau Yu Hsu; Rami Rauch; Haili W. Kowalski; Aaron J. W. Hsueh

Intercellular communication in multicellular organisms requires the relay of extracellular signals by cell surface proteins to the interiors of cells. The availability of genome sequences from humans and several model organisms has facilitated the identification of several human plasma membrane receptor families and allowed the analysis of their phylogeny. This review provides a global categorization of most known signal transduction-associated receptors as enzymes, recruiters, and latent transcription factors. The evolution of known families of human plasma membrane signaling receptors was traced in current literature and validated by sequence relatedness. This global analysis reveals themes that recur during receptor evolution and allows the formulation of hypotheses for the origins of receptors. The human receptor families involved in signaling (with the exception of channels) are presented in the Human Plasma Membrane Receptome database. Receptor proteins in the plasma membrane of cells are responsible for the reception and transmission of outside signals secreted by neighboring or remote cells. Defects in these cell surface proteins are responsible for various hormonal diseases, developmental defects, and tumor formation. Based on functional similarity and sequence relatedness, human receptor genes can be grouped into a limited number of families, and their evolutionary origins can now be traced by comparing sequences of similar genes found in humans and various model organisms. This STKE Review discusses the common features and possible evolutionary origins of some of the human plasma membrane receptors involved in signal transduction. The Review contains nine figures, two tables, and 157 citations. A database (http://Receptome.Stanford.edu) has been established to allow searches for human plasma membrane receptors based on their family relationship, evolution, and sequences.


Journal of Biological Chemistry | 1998

A Splicing Variant of the Bcl-2 Member Bok with a Truncated BH3 Domain Induces Apoptosis but Does Not Dimerize with Antiapoptotic Bcl-2 Proteins in Vitro

Sheau Yu Hsu; Aaron J. W. Hsueh

Bok (Bcl-2-relatedovarian killer) is a proapoptotic Bcl-2 family protein identified in the ovary based on its dimerization with the antiapoptotic protein Mcl-1. In addition to the Bcl-2 homology (BH) domains 1 and 2 and the transmembrane sequence, Bok also has a BH3 domain believed to be important for dimerization with selective antiapoptotic Bcl-2 proteins and cell killing. We identified a splicing variant of Bok mRNA with a deletion of 43 residues from the full-length protein (Bok-L), leading to the fusion of the N-terminal-half of its BH3 domain to the C-terminal-half of the BH1 domain. Genomic analysis indicated that the Bok has five exons, and the short form of Bok (Bok-S) represents the splicing out of exon three during transcription. Although Bok-S retains the apoptosis-inducing activity in transfected cells, it has lost the ability to dimerize with antiapoptotic proteins in vitro. Additional BH3 domain mutations of Bok-L also led to defective heterodimerization without affecting its proapoptotic action. Furthermore, similar deletions for the related channel-forming proapoptotic Bax and Bak did not impair their cell killing ability. Thus, the naturally occurring Bok-S variant represents a new form of proapoptotic protein that induces cell killing without heterodimerization with antiapoptotic Bcl-2 proteins. This variant appears to contain the minimal module spanning BH1 and BH2 domains and the transmembrane sequence for apoptosis induction by channel-forming Bcl-2 proteins.


Endocrinology | 1999

Characterization of the Antiapoptotic Bcl-2 Family Member Myeloid Cell Leukemia-1 (Mcl-1) and the Stimulation of Its Message by Gonadotropins in the Rat Ovary1

Chandra P. Leo; Sheau Yu Hsu; Sang-Young Chun; Hyun-Wook Bae; Aaron J. W. Hsueh

The majority of ovarian follicles undergo atresia mediated by apoptosis. Bcl-2-related proteins act as regulators of apoptosis via the formation of dimers with proteins inside and outside the Bcl-2 family. Previous studies have identified BAD as a proapoptotic Bcl-2 family member expressed in the ovary. It is known that BAD phosphorylation induced by survival factors leads to its preferential binding to 14–3-3 and suppression of the death-inducing function of BAD. To identify ovarian binding partners for hypophosphorylated BAD, we performed a yeast two-hybrid screening of a rat ovary complementary DNA library using as bait a mutant BAD incapable of binding to 14–3-3. Screening of yeast transformants yielded positive clones encoding the rat ortholog of Mcl-1 (myeloid cell leukemia-1), an antiapoptotic Bcl-2 protein. Amino acid sequence analysis revealed that rat and human Mcl-1 showed a complete conservation of the Bcl-2 homology domains BH1, BH2, and BH3. In the yeast two-hybrid system, Mcl-1 binds to the...


Endocrinology | 2000

Characterization of two fly LGR (leucine-rich repeat-containing, G protein-coupled receptor) proteins homologous to vertebrate glycoprotein hormone receptors: constitutive activation of wild-type fly LGR1 but not LGR2 in transfected mammalian cells.

Shinya Nishi; Sheau Yu Hsu; Karen Zell; Aaron J. W. Hsueh

The receptors for lutropin (LH), FSH, and TSH belong to the large G protein-coupled receptor (GPCR) superfamily and are unique in having a large N-terminal extracellular (ecto-) domain important for interactions with the large glycoprotein hormone ligands. Recent studies indicated the evolution of a large family of the leucine-rich repeat-containing, G protein-coupled receptors (LGRs) with at least seven members in mammals. Based on the sequences of mammalian glycoprotein hormone receptors, we have identified a new LGR in Drosophila melanogaster and named it as fly LGR2 to distinguish it from the previously reported fly LH/FSH/TSH receptor (renamed as fly LGR1). Genomic analysis indicated the presence of 10 exons in fly LGR2 as compared with 16 exons in fly LGR1. The deduced fly LGR2 complementary DNA (cDNA) showed 43 and 64% similarity to the fly LGR1 in the ectodomain and transmembrane region, respectively. Comparison of 12 LGRs from diverse species indicated that these proteins can be divided into three subfamilies and fly LGR1 and LGR2 belong to different subfamilies. Potential signaling mechanisms were tested in human 293T cells overexpressing the fly receptors. Of interest, fly LGR1, but not LGR2, showed constitutive activity as reflected by elevated basal cAMP production in transfected cells. The basal activity of fly LGR1 was further augmented following point mutations of key residues in the intracellular loop 3 or transmembrane VI, similar to those found in patients with familial male precocious puberty. The present study reports the cloning of fly LGR2 and indicates that the G protein-coupling mechanism is conserved in fly LGR1 as compared with the mammalian glycoprotein hormone receptors. The characterization of fly receptors with features similar to mammalian glycoprotein hormone receptors allows a better understanding of the evolution of this unique group of GPCRs and future elucidation of their ligand signaling mechanisms.


Trends in Endocrinology and Metabolism | 1997

Hormonal Regulation of Apoptosis An Ovarian Perspective

Sheau Yu Hsu; Aaron J. W. Hsueh

Using the ovary as a model system for studying the hormonal regulation of apoptosis, recent studies have revealed that the survival of growing follicles is under the regulation of a complex array of hormones through endocrine, paracrine, autocrine, or juxtacrine mechanism in a development-dependent manner. More effort is needed, however, to identify tissue-specific factors required for the survival of ovarian somatic and germ cells at specific stage of development. New insights based on characterization of conserved apoptotic effectors, both extracellular and intracellular, have suggested that apoptosis in ovarian cells may be mediated by apoptotic programs common to other cells but using specific members of the death domain proteins as well as ced-9/Bcl-2 and ced-3/ICE caspase families of genes. Future studies may provide new therapeutic modalities for different ovarian diseases caused by aberrant regulation of apoptosis in ovarian cells, including premature ovarian failure and polycystic ovarian syndrome. (Trends Endocrinol Metab 1997;8:207-213). (c) 1997, Elsevier Science Inc.


Science | 2002

Activation of Orphan Receptors by the Hormone Relaxin

Sheau Yu Hsu; Koji Nakabayashi; Shinya Nishi; Jin Kumagai; Masataka Kudo; O. David Sherwood; Aaron J. W. Hsueh


Nature Medicine | 2001

Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor

Sheau Yu Hsu; Aaron J. W. Hsueh

Collaboration


Dive into the Sheau Yu Hsu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang-Young Chun

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge