Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aaron R. Thorner is active.

Publication


Featured researches published by Aaron R. Thorner.


Cancer Discovery | 2015

Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets

Priscilla K. Brastianos; Scott L. Carter; Sandro Santagata; Daniel P. Cahill; Amaro Taylor-Weiner; Robert T. Jones; Eliezer M. Van Allen; Michael S. Lawrence; Peleg Horowitz; Kristian Cibulskis; Keith L. Ligon; Josep Tabernero; Joan Seoane; Elena Martinez-Saez; William T. Curry; Ian F. Dunn; Sun Ha Paek; Sung-Hye Park; Aaron McKenna; Aaron Chevalier; Mara Rosenberg; Fred G. Barker; Corey M. Gill; Paul Van Hummelen; Aaron R. Thorner; Bruce E. Johnson; Mai P. Hoang; Toni K. Choueiri; Sabina Signoretti; Carrie Sougnez

UNLABELLED Brain metastases are associated with a dismal prognosis. Whether brain metastases harbor distinct genetic alterations beyond those observed in primary tumors is unknown. We performed whole-exome sequencing of 86 matched brain metastases, primary tumors, and normal tissue. In all clonally related cancer samples, we observed branched evolution, where all metastatic and primary sites shared a common ancestor yet continued to evolve independently. In 53% of cases, we found potentially clinically informative alterations in the brain metastases not detected in the matched primary-tumor sample. In contrast, spatially and temporally separated brain metastasis sites were genetically homogenous. Distal extracranial and regional lymph node metastases were highly divergent from brain metastases. We detected alterations associated with sensitivity to PI3K/AKT/mTOR, CDK, and HER2/EGFR inhibitors in the brain metastases. Genomic analysis of brain metastases provides an opportunity to identify potentially clinically informative alterations not detected in clinically sampled primary tumors, regional lymph nodes, or extracranial metastases. SIGNIFICANCE Decisions for individualized therapies in patients with brain metastasis are often made from primary-tumor biopsies. We demonstrate that clinically actionable alterations present in brain metastases are frequently not detected in primary biopsies, suggesting that sequencing of primary biopsies alone may miss a substantial number of opportunities for targeted therapy.


Nature Genetics | 2014

Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas

Priscilla K. Brastianos; Amaro Taylor-Weiner; Peter Manley; Robert T. Jones; Dora Dias-Santagata; Aaron R. Thorner; Michael S. Lawrence; Fausto J. Rodriguez; Lindsay A. Bernardo; Laura Schubert; Ashwini Sunkavalli; Nick Shillingford; Monica L. Calicchio; Hart G.W. Lidov; Hala Taha; Maria Martinez-Lage; Mariarita Santi; Phillip B. Storm; John Y. K. Lee; James N. Palmer; Nithin D. Adappa; R. Michael Scott; Ian F. Dunn; Edward R. Laws; Chip Stewart; Keith L. Ligon; Mai P. Hoang; Paul Van Hummelen; William C. Hahn; David N. Louis

Craniopharyngiomas are epithelial tumors that typically arise in the suprasellar region of the brain. Patients experience substantial clinical sequelae from both extension of the tumors and therapeutic interventions that damage the optic chiasm, the pituitary stalk and the hypothalamic area. Using whole-exome sequencing, we identified mutations in CTNNB1 (β-catenin) in nearly all adamantinomatous craniopharyngiomas examined (11/12, 92%) and recurrent mutations in BRAF (resulting in p.Val600Glu) in all papillary craniopharyngiomas (3/3, 100%). Targeted genotyping revealed BRAF p.Val600Glu in 95% of papillary craniopharyngiomas (36 of 39 tumors) and mutation of CTNNB1 in 96% of adamantinomatous craniopharyngiomas (51 of 53 tumors). The CTNNB1 and BRAF mutations were clonal in each tumor subtype, and we detected no other recurrent mutations or genomic aberrations in either subtype. Adamantinomatous and papillary craniopharyngiomas harbor mutations that are mutually exclusive and clonal. These findings have important implications for the diagnosis and treatment of these neoplasms.


Cancer Discovery | 2014

The Genomic Landscape of Pediatric Ewing Sarcoma

Brian D. Crompton; Chip Stewart; Amaro Taylor-Weiner; Gabriela Alexe; Kurek Kc; Monica L. Calicchio; Adam Kiezun; Scott L. Carter; Sachet A. Shukla; Swapnil Mehta; Aaron R. Thorner; de Torres C; Cinzia Lavarino; Mariona Suñol; Aaron McKenna; Andrey Sivachenko; Kristian Cibulskis; Michael S. Lawrence; Petar Stojanov; Mara Rosenberg; Lauren Ambrogio; Daniel Auclair; Sara Seepo; Brendan Blumenstiel; Matthew DeFelice; Ivan Imaz-Rosshandler; Miguel Rivera; Carlos Rodriguez-Galindo; Fleming; Todd R. Golub

UNLABELLED Pediatric Ewing sarcoma is characterized by the expression of chimeric fusions of EWS and ETS family transcription factors, representing a paradigm for studying cancers driven by transcription factor rearrangements. In this study, we describe the somatic landscape of pediatric Ewing sarcoma. These tumors are among the most genetically normal cancers characterized to date, with only EWS-ETS rearrangements identified in the majority of tumors. STAG2 loss, however, is present in more than 15% of Ewing sarcoma tumors; occurs by point mutation, rearrangement, and likely nongenetic mechanisms; and is associated with disease dissemination. Perhaps the most striking finding is the paucity of mutations in immediately targetable signal transduction pathways, highlighting the need for new therapeutic approaches to target EWS-ETS fusions in this disease. SIGNIFICANCE We performed next-generation sequencing of Ewing sarcoma, a pediatric cancer involving bone, characterized by expression of EWS-ETS fusions. We found remarkably few mutations. However, we discovered that loss of STAG2 expression occurs in 15% of tumors and is associated with metastatic disease, suggesting a potential genetic vulnerability in Ewing sarcoma.


The EMBO Journal | 2005

Conditional MLL-CBP targets GMP and models therapy-related myeloproliferative disease

Jing Wang; Hiromi Iwasaki; Andrei V. Krivtsov; Phillip G. Febbo; Aaron R. Thorner; Patricia Ernst; Erna Anastasiadou; Jeffery L. Kutok; Scott C. Kogan; Sandra S. Zinkel; Jill K. Fisher; Jay L. Hess; Todd R. Golub; Scott A. Armstrong; Koichi Akashi; Stanley J. Korsmeyer

Chromosomal translocations that fuse the mixed lineage leukemia (MLL) gene with multiple partners typify acute leukemias of infancy as well as therapy‐related leukemias. We utilized a conditional knockin strategy to bypass the embryonic lethality caused by MLL‐CBP expression and to assess the immediate effects of induced MLL‐CBP expression on hematopoiesis. Within days of activating MLL‐CBP, the fusion protein selectively expanded granulocyte/macrophage progenitors (GMP) and enhanced their self‐renewal/proliferation. MLL‐CBP altered the gene expression program of GMP, upregulating a subset of genes including Hox a9. Inhibition of Hox a9 expression by RNA interference demonstrated that MLL‐CBP required Hox a9 for its enhanced cell expansion. Following exposure to sublethal γ‐irradiation or N‐ethyl‐N‐nitrosourea (ENU), MLL‐CBP mice developed myelomonocytic hyperplasia and progressed to fatal myeloproliferative disorders. These represented the spectrum of therapy‐induced acute myelomonocytic leukemia/chronic myelomonocytic leukemia/myelodysplastic/myeloproliferative disorder similar to that seen in humans possessing the t(11;16). This model of MLL‐CBP therapy‐related myeloproliferative disease demonstrates the selectivity of this MLL fusion for GMP cells and its ability to initiate leukemogenesis in conjunction with cooperating mutations.


Blood | 2016

Targetable genetic features of primary testicular and primary central nervous system lymphomas

Bjoern Chapuy; Margaretha G. M. Roemer; Chip Stewart; Yuxiang Tan; Ryan P. Abo; Liye Zhang; Andrew Dunford; David Meredith; Aaron R. Thorner; Ekaterina S. Jordanova; Gang Liu; Friedrich Feuerhake; Matthew Ducar; Gerald Illerhaus; Daniel Gusenleitner; Erica Linden; Heather Sun; Heather Homer; Miyuki Aono; Geraldine S. Pinkus; Azra H. Ligon; Keith L. Ligon; Judith A. Ferry; Gordon J. Freeman; Paul Van Hummelen; Todd R. Golub; Gad Getz; Scott J. Rodig; Daphne de Jong; Stefano Monti

Primary central nervous system lymphomas (PCNSLs) and primary testicular lymphomas (PTLs) are extranodal large B-cell lymphomas (LBCLs) with inferior responses to current empiric treatment regimens. To identify targetable genetic features of PCNSL and PTL, we characterized their recurrent somatic mutations, chromosomal rearrangements, copy number alterations (CNAs), and associated driver genes, and compared these comprehensive genetic signatures to those of diffuse LBCL and primary mediastinal large B-cell lymphoma (PMBL). These studies identify unique combinations of genetic alterations in discrete LBCL subtypes and subtype-selective bases for targeted therapy. PCNSLs and PTLs frequently exhibit genomic instability, and near-uniform, often biallelic, CDKN2A loss with rare TP53 mutations. PCNSLs and PTLs also use multiple genetic mechanisms to target key genes and pathways and exhibit near-uniform oncogenic Toll-like receptor signaling as a result of MYD88 mutation and/or NFKBIZ amplification, frequent concurrent B-cell receptor pathway activation, and deregulation of BCL6. Of great interest, PCNSLs and PTLs also have frequent 9p24.1/PD-L1/PD-L2 CNAs and additional translocations of these loci, structural bases of immune evasion that are shared with PMBL.


Cancer Cell | 2016

The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice

Elizabeth Townsend; Mark A. Murakami; Alexandra N. Christodoulou; Amanda L. Christie; Johannes Köster; Tiffany DeSouza; Elizabeth A. Morgan; Scott P. Kallgren; Huiyun Liu; Shuo-Chieh Wu; Olivia Plana; Joan Montero; Kristen E. Stevenson; Prakash Rao; Raga Vadhi; Michael Andreeff; Philippe Armand; Karen K. Ballen; Patrizia Barzaghi-Rinaudo; Sarah Cahill; Rachael A. Clark; Vesselina G. Cooke; Matthew S. Davids; Daniel J. DeAngelo; David M. Dorfman; Hilary Eaton; Benjamin L. Ebert; Julia Etchin; Brant Firestone; David C. Fisher

More than 90% of drugs with preclinical activity fail in human trials, largely due to insufficient efficacy. We hypothesized that adequately powered trials of patient-derived xenografts (PDX) in mice could efficiently define therapeutic activity across heterogeneous tumors. To address this hypothesis, we established a large, publicly available repository of well-characterized leukemia and lymphoma PDXs that undergo orthotopic engraftment, called the Public Repository of Xenografts (PRoXe). PRoXe includes all de-identified information relevant to the primary specimens and the PDXs derived from them. Using this repository, we demonstrate that large studies of acute leukemia PDXs that mimic human randomized clinical trials can characterize drug efficacy and generate transcriptional, functional, and proteomic biomarkers in both treatment-naive and relapsed/refractory disease.


Nucleic Acids Research | 2015

BreaKmer: detection of structural variation in targeted massively parallel sequencing data using kmers

Ryan P. Abo; Matthew Ducar; Elizabeth Garcia; Aaron R. Thorner; Vanesa Rojas-Rudilla; Ling Lin; Lynette M. Sholl; William C. Hahn; Matthew Meyerson; Neal I. Lindeman; Paul Van Hummelen; Laura E. MacConaill

Genomic structural variation (SV), a common hallmark of cancer, has important predictive and therapeutic implications. However, accurately detecting SV using high-throughput sequencing data remains challenging, especially for ‘targeted’ resequencing efforts. This is critically important in the clinical setting where targeted resequencing is frequently being applied to rapidly assess clinically actionable mutations in tumor biopsies in a cost-effective manner. We present BreaKmer, a novel approach that uses a ‘kmer’ strategy to assemble misaligned sequence reads for predicting insertions, deletions, inversions, tandem duplications and translocations at base-pair resolution in targeted resequencing data. Variants are predicted by realigning an assembled consensus sequence created from sequence reads that were abnormally aligned to the reference genome. Using targeted resequencing data from tumor specimens with orthogonally validated SV, non-tumor samples and whole-genome sequencing data, BreaKmer had a 97.4% overall sensitivity for known events and predicted 17 positively validated, novel variants. Relative to four publically available algorithms, BreaKmer detected SV with increased sensitivity and limited calls in non-tumor samples, key features for variant analysis of tumor specimens in both the clinical and research settings.


PLOS Genetics | 2015

Mosaic and Intronic Mutations in TSC1/TSC2 Explain the Majority of TSC Patients with No Mutation Identified by Conventional Testing

Magdalena E. Tyburczy; Kira A. Dies; Jennifer Glass; Susana Camposano; Yvonne Chekaluk; Aaron R. Thorner; Ling Lin; Darcy A. Krueger; David Neal Franz; Elizabeth A. Thiele; Mustafa Sahin; David J. Kwiatkowski

Tuberous sclerosis complex (TSC) is an autosomal dominant tumor suppressor gene syndrome due to germline mutations in either TSC1 or TSC2. 10–15% of TSC individuals have no mutation identified (NMI) after thorough conventional molecular diagnostic assessment. 53 TSC subjects who were NMI were studied using next generation sequencing to search for mutations in these genes. Blood/saliva DNA including parental samples were available from all subjects, and skin tumor biopsy DNA was available from six subjects. We identified mutations in 45 of 53 subjects (85%). Mosaicism was observed in the majority (26 of 45, 58%), and intronic mutations were also unusually common, seen in 18 of 45 subjects (40%). Seventeen (38%) mutations were seen at an allele frequency < 5%, five at an allele frequency < 1%, and two were identified in skin tumor biopsies only, and were not seen at appreciable frequency in blood or saliva DNA. These findings illuminate the extent of mosaicism in TSC, indicate the importance of full gene coverage and next generation sequencing for mutation detection, show that analysis of TSC-related tumors can increase the mutation detection rate, indicate that it is not likely that a third TSC gene exists, and enable provision of genetic counseling to the substantial population of TSC individuals who are currently NMI.


Neuro-oncology | 2016

Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma

Malak Abedalthagafi; Wenya Linda Bi; Ayal A. Aizer; Parker H. Merrill; Ryan Brewster; Pankaj K. Agarwalla; Marc L. Listewnik; Dora Dias-Santagata; Aaron R. Thorner; Paul Van Hummelen; Priscilla K. Brastianos; David A. Reardon; Patrick Y. Wen; Ossama Al-Mefty; Shakti Ramkissoon; Rebecca D. Folkerth; Keith L. Ligon; Azra H. Ligon; Brian M. Alexander; Ian F. Dunn; Rameen Beroukhim; Sandro Santagata

BACKGROUND Meningiomas are the most common primary intracranial tumor in adults. Identification of SMO and AKT1 mutations in meningiomas has raised the possibility of targeted therapies for some patients. The frequency of such mutations in clinical cohorts and the presence of other actionable mutations in meningiomas are important to define. METHODS We used high-resolution array-comparative genomic hybridization to prospectively characterize copy-number changes in 150 meningiomas and then characterized these samples for mutations in AKT1, KLF4, NF2, PIK3CA, SMO, and TRAF7. RESULTS Similar to prior reports, we identified AKT1 and SMO mutations in a subset of non-NF2-mutant meningiomas (ie, ∼9% and ∼6%, respectively). Notably, we detected oncogenic mutations in PIK3CA in ∼7% of non-NF2-mutant meningiomas. AKT1, SMO, and PIK3CA mutations were mutually exclusive. AKT1, KLF4, and PIK3CA mutations often co-occurred with mutations in TRAF7. PIK3CA-mutant meningiomas showed limited chromosomal instability and were enriched in the skull base. CONCLUSION This work identifies PI3K signaling as an important target for precision medicine trials in meningioma patients.


Clinical Cancer Research | 2016

Mutations in TSC1, TSC2, and MTOR Are Associated with Response to Rapalogs in Patients with Metastatic Renal Cell Carcinoma

David J. Kwiatkowski; Toni K. Choueiri; Andre Poisl Fay; Brian I. Rini; Aaron R. Thorner; Guillermo Velasco; Magdalena E. Tyburczy; Lana Hamieh; Laurence Albiges; Neeraj Agarwal; Thai H. Ho; Jiaxi Song; Jean-Christophe Pignon; Pablo M. Barrios; M. Dror Michaelson; Eliezer M. Van Allen; Katherine M. Krajewski; Camillo Porta; Sumanta K. Pal; Joaquim Bellmunt; David F. McDermott; Daniel Y.C. Heng; Kathryn P. Gray; Sabina Signoretti

Purpose: We examined the hypothesis that mutations in mTOR pathway genes are associated with response to rapalogs in metastatic renal cell carcinoma (mRCC). Experimental Design: We studied a cohort of mRCC patients who were treated with mTOR inhibitors with distinct clinical outcomes. Tumor DNA from 79 subjects was successfully analyzed for mutations using targeted next-generation sequencing of 560 cancer genes. Responders were defined as those with partial response (PR) by RECIST v1.0 or stable disease with any tumor shrinkage for 6 months or longer. Nonresponders were defined as those with disease progression during the first 3 months of therapy. Fisher exact test assessed the association between mutation status in mTOR pathway genes and treatment response. Results: Mutations in MTOR, TSC1, or TSC2 were more common in responders, 12 (28%) of 43, than nonresponders, 4 (11%) of 36 (P = 0.06). Mutations in TSC1 or TSC2 alone were also more common in responders, 9 (21%), than nonresponders, 2(6%), (P = 0.05). Furthermore, 5 (42%) of 12 subjects with PR had mutations in MTOR, TSC1, or TSC2 compared with 4 (11%) of 36 nonresponders (P = 0.03). Eight additional non-mTOR pathway genes were found to be mutated in at least 4 of 79 tumors (5%); none were associated positively with response. Conclusions: In this cohort of mRCC patients, mutations in MTOR, TSC1, or TSC2 were more common in patients who experienced clinical benefit from rapalogs than in those who progressed. However, a substantial fraction of responders (24 of 43, 56%) had no mTOR pathway mutation identified. Clin Cancer Res; 22(10); 2445–52. ©2016 AACR. See related commentary by Voss and Hsieh, p. 2320

Collaboration


Dive into the Aaron R. Thorner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge